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Abstract

This project presents an iterative approach for upscaling a machine learning model for microstruc-
tural semantic segmentation of two-phase steels light optical micrographs. Several deep learning
models have been trained, using a U-NET architecture with DenseNet-201 pretrained weights on
ImageNet as backbone.

Metallographic samples from rolled plates have been produced and analyzed in different mi-
croscopes to collect data for training and testing, aiming to specifically increase the manageable
variance as well as the model’s robustness. The results from previous models were then used as
masks to train the final one.

The incorporation of a higher variance in the model through different acquisition conditions
images resulted in a more robust model, that can consistently segment images at various magnifi-
cations, from different microscopes, and taken under suboptimal conditions.

The utilization of previous segmentation results as masks allowed to introduce more data to
the training data set. This allowed to minimize the need to produce hand annotated masks, which
are time consuming to make and often constitute a bottle neck for model training.

The relevance of these results lies in the possibility to correlate the results from the model (sec-
ond phase fraction and morphological parameters of the particles) with mechanical properties and
manufacturing parameters. Moreover, light optical micrographs are inexpensive, fast to produce
and already implemented in quality control at an industrial scale, thus making the implementation
of this analysis technique in the industry feasible.
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Resumen

En las últimas décadas, se ha observado un cambio de paradigma en el diseño de los aceros.
Desplazándose desde un enfoque empírico, donde se buscaba relacionar las propiedades mecánicas
con los parámetros de procesamiento, a poner la microestructura un lugar central, como nexo entre
el proceso y las propiedades.

En este sentido, el desarrollo de nuevas tecnologías y técnicas de caracterización juega un rol
fundamental en el desarrollo de la industria. Con el surgimiento de microestructuras más complejas,
la realización de un análisis microestructural cuantitativo consistente y confiable es cada vez más
necesario y a la vez más difícil.

Previamente, se han implementado exitosamente modelos de inteligencia artificial para carac-
terización microestructural. En este trabajo, se han utilizado específicamente redes neuronales
convolucionales, un tipo de algoritmo de aprendizaje automático, como herramienta de análisis.

Sin embargo, algunas de las limitaciones actuales están relacionadas a la sensibilidad de los
modelos a las condiciones de preparación de las muestras y a los parámetros de adquisición de las
imágenes. Técnicas de microscopia correlativa, que combinan la información de diferentes fuentes
para asignar la verdad fundamental para el entrenamiento de modelos, han demostrado ser efectivas
para conseguir buenos resultados. No obstante, este enfoque requiere de equipamiento costoso y
un alto grado de experiencia.

El objetivo de este trabajo es escalar modelos de segmentación y clasificación de micrografías
ópticas de aceros de dos fases incorporando muestras de acero de grado industrial. En este sentido,
se utilizaron microscopios ópticos para obtener imágenes de muestras atacadas con nital. Las
micrografías ópticas de muestras atacadas con nital se emplean actualmente en control de calidad
a nivel industrial debido a su sencillez y bajo costo, lo que permite analizar un gran volumen de
muestras.

Las muestras utilizadas son de aceros de grado industrial provenientes de la planta de Dillinger
Hütte, ubicada en Saarland, Alemania. Esta empresa se especializa en la producción de chapas de
acero. Su planta cuenta con altos hornos, colada continua y trenes laminadores, permitiendo así
un control integral sobre el proceso de producción del acero. El principal destino de su producción
es la fabricación de tuberías, pero sus productos también se utilizan en plataformas de perforación,
barcos, puentes, etc.

La gran variedad de grados de acero, producto de distintas combinaciones de aleantes y tratamien-
tos termo mecánicos, genera una complejidad adicional en la microestructura de los productos, que
muchas veces dista de las estructuras típicas observadas en bibliografía.

Por este motivo, se realizaron micrografías complementarias con un microscopio electrónico de
barrido, cuyo mayor poder de resolución permite una mejor identificación de las fases presentes.
Los parámetros de procesamiento y la composición química también fueron tenidos en cuenta al
momento de caracterizar manualmente las microestructuras.

Se entrenaron varios modelos de aprendizaje profundo, usando la arquitectura U-NET y los
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pesos preentrenados en ImageNet de la arquitectura DenseNet 201 como codificador. Todos los
modelos fueron entrenados para segmentar las micrografías ópticas en tres clases: matriz, segunda
fase perlítica y segunda fase bainítica/martensítica. La combinación de bainita y martensita en
una clase responde a la limitación intrínseca de resolución de la microscopía óptica, que no es
suficiente para diferenciar consistentemente estos dos constituyentes, especialmente debido a que
ambos pueden estar presentes en la misma muestra a distintas profundidades en el espesor de la
plancha.

Los modelos desarrollados son alimentados con micrografías ópticas y producen como resultado
una máscara que contiene la clase asignada a cada píxel de la imagen. A partir de esto se puede
conocer la naturaleza y porcentaje de la segunda fase y calcular parámetros morfológicos de las
partículas.

La caracterización manual de las microestructuras en primera instancia permite elaborar las
máscaras necesarias para el entrenamiento de los modelos. Estas mascaras, conocidas como "verdad
fundamental" o "ground truth" en inglés, contienen la asignación de clases píxel a píxel de cada
micrografía. Este proceso es extremadamente lento, y a menudo constituye un cuello de botella en
el desarrollo de modelos de aprendizaje profundo.

Para aumentar la robustez del modelo, es decir, la varianza que es capaz de manejar man-
teniendo resultados satisfactorios, se tomaron imágenes con varios microscopios y en diferentes
condiciones de adquisición (magnificación, tiempo de exposición, apertura, entre otros). Estas
variables fueron tenidas en cuenta al momento de analizar el desempeño de los modelos. La ele-
vada varianza es inevitable en los procesos de control de calidad, debido a que intervienen varias
personas y equipos y a que se analiza un gran número de muestras.

Se realizaron indentaciones de dureza en diferentes posiciones de la probeta. Cerca de la
superficie, a un cuarto del espesor y a la mitad del espesor. Esto responde a dos propósitos. En
primer lugar, analizar si es posible establecer correlaciones entre los resultados del modelo y la
dureza del material. Y, en segundo lugar, para posibilitar la adquisición de imágenes de la misma
región con los diferentes equipos.

El enfoque del trabajo se centró en la mejora iterativa de los modelos, que se dividieron en
tres generaciones. En cada iteración, el desempeño de los modelos fue evaluado con imágenes
que no habían sido utilizadas durante el entrenamiento, y nuevas máscaras fueron incorporadas al
conjunto de entrenamiento. En su mayoria, estas máscaras no fueron realizadas en forma manual,
sino que se utilizaron los resultados de generaciones anteriores del modelo para retroalimentar su
mejora. De esta forma, se logró reducir al mínimo la necesidad de producir mascaras manualmente,
ahorrando tiempo de manera considerable.

El análisis de la primera generación de modelos se centró en la resolución de imagen más ade-
cuada tanto para su entrenamiento como para su funcionamiento. Cabe destacar que debido a
restricciones de capacidad computacional y de la disponibilidad de máscaras, las imágenes uti-
lizadas para entrenamiento se dividen en mosaicos. Así, se logra aumentar la cantidad de imágenes
disponibles y reducir la capacidad de cómputo necesaria durante el entrenamiento. Durante el
funcionamiento, en cambio, las imágenes se procesan completas, aunque deben ser re escaladas
debido a la naturaleza de funcionamiento de las redes neuronales. Se observó un mejor desempeño
usando un mayor tamaño de mosaico de entrenamiento y una resolución de funcionamiento cercana
a la resolución nativa de la cámara de cada microscopio.

También se analizó la posibilidad de incluir un paso de preprocesamiento para corrección de
sombras mediante el algoritmo de bola rodante. Sin embargo, el costo computacional de este paso
resultó demasiado elevado y las mejoras de desempeño fueron inconsistentes. Por lo tanto, se
decidió eliminarlo en las generaciones posteriores.
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El desempeño del mejor modelo de esta generación fue satisfactorio en imágenes capturadas
bajo condiciones óptimas, pero el reconocimiento de los bordes de los objetos de segunda fase y
las partículas pequeñas fue deficiente, así como también su desempeño en imágenes no óptimas.
Aun así, de los resultados se pudieron extraer máscaras para el entrenamiento de los modelos de
segunda generación.

Se entrenaron dos modelos de segunda generación utilizando mayores tamaños de mosaico. En
esta iteración, se observó el punto de equilibrio, con mosaicos de 768 x 768 px, que resultaron
en un desempeño superior a los de mayor resolución. Esto puede deberse al menor numero de
mosaicos de mayor resolución que se pueden producir a partir de las imágenes, así como también
a las limitaciones en la capacidad computacional para procesarlos simultáneamente al entrenar el
modelo.

La varianza introducida mediante las máscaras de la anterior generación se tradujo en un
mejor desempeño en condiciones no óptimas. Esto permitió incorporar más mascaras para el
entrenamiento de la tercera generación de modelos.

El modelo final, de la tercera generación, mostró una nueva mejora de desempeño. Se logró
segmentar de manera consistente micrografías de muestras que no habían sido utilizadas durante
el entrenamiento tomadas en distintas condiciones.

Aun así, el modelo final todavía cuenta con limitaciones, mostrando un desempeño inferior
en micrografías capturadas con una magnificación de 1000x o con bajo contraste. En base a lo
observado durante el desarrollo actual, es posible que la incorporación de los resultados del último
modelo al conjunto de entrenamiento para un modelo posterior resulte en una mejora adicional del
rendimiento.

Los resultados del último modelo se utilizaron para establecer correlaciones entre la fracción
de segunda fase y el área promedio de las partículas con la dureza Vickers a lo largo de la sección
transversal de las muestras. Se pudo observar la influencia del gradiente de temperatura durante
el proceso de enfriamiento y de la segregación en la microestructura y cuantificarlo mediante los
resultados obtenidos con el modelo.

La relevancia de estos resultados yace en la posibilidad de correlacionar los resultados del
modelo (fracción de segunda fase y parámetros morfológicos de las partículas) con propiedades
mecánicas y parámetros de procesamiento. Además, las micrografías ópticas son baratas, fáciles
de producir, y ya están implementadas como control de calidad en escala industrial, lo que hace
que la implementación de esta técnica de análisis en la industria sea factible.

La implementación de modelos de inteligencia artificial en la ciencia de materiales ya ha probado
ser útil en numerosas tareas y aún tiene un gran potencial de desarrollo. Al automatizar el análi-
sis de microestructuras complejas estos modelos también tienen potencial de ser aplicados en la
industria, contribuyendo a desarrollar mejores productos a un menor costo.
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Chapter 1

Introduction

Steel is a widely used material and has an uncountable amount of applications in different fields,
ranging from heavy machinery to jewellery. This is possible because of the equally wide range of
properties that can be achieved by introducing different alloying elements and thermomechanical
treatments into the steel.

There are over 3500 different grades of steels, that summed up to a production of more than
1800 million tons worldwide only in 2023 [1]. Besides its versatility, the employment of steel for
such a wide range of applications is related to its availability, as its main element, iron, is abundant
on the earth’s crust. Moreover, steel is recyclable and on average, new steel products contain 30
% recycled steel [1].

The development of new technologies and characterization techniques plays a fundamental
role in the constant development of the industry. More complex microstructures arise, making
reliable and objective microstructural analysis more difficult to achieve with traditional techniques.
Furthermore, stricter tolerance margins necessary to fulfil quality standards require to test a large
number of samples, making it a costly and time-consuming task.

Another reason that motivates the development of modern microstructural characterization
techniques is the paradigm shift in the steel design process. Moving from an empirical approach,
where a direct link between the processing steps and the mechanical properties was established,
to one where microstructure itself plays a key role, as a link between process and properties.
In this context, microstructure engineering is supported by a broad range of technologies, from
widely implemented methods such as electron scanning microscopy (SEM) and electron backscatter
diffraction (EBSD) to more novel techniques such as atom probe tomography [2], or computational
simulations [3].

The rise of artificial intelligence has opened a new world of possibilities in many research
fields, and materials science is not the exception. Artificial intelligence models have already been
successfully employed for microstructural characterization [4], [5], [6]. It is an emerging technology,
with lots of potential applications yet to be discovered.

Microstructural classification and segmentation have already been carried out using artificial
intelligence techniques via machine learning models [7], [8]. This sub-field of artificial intelligence
focuses on the development of algorithms that mimic the human decision-making process by learn-
ing features from data through statistical modelling to predict future values [9]. These efforts
aim to provide reliable tools for automatic microstructural analysis. This can save both the time
and the resources needed for manual analysis while ensuring a higher degree of consistency and
objectivity. However, some of the limitations encountered so far are related to the sensitivity of
the results to the sample preparation and image acquisition parameters.
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Correlative microscopy techniques have proven to be effective for these tasks [10]. They combine
data from different sources to assign the ground truth (expected output) in an objective way and
generate masks to train the machine learning algorithms. However, this approach requires costly
equipment and a high level of expertise. Therefore, the objective of this work is to upscale the
classification and segmentation of light optical micrographs from two-phase steels by incorporating
data from industrial grade samples. By using the segmentation results from previously trained
models as masks, time and resources can be saved at the moment of training new models. Moreover,
light optical micrographs are inexpensive to produce and already implemented for quality control
at large-scale thus providing a practical solution.

The methodology of the work consists of the preparation of metallographic samples, acquisition
of images, and analysis of the performance of the models to identify their strengths and weaknesses
and produce more data to iteratively improve the performance. As a secondary objective, the
correlation between the quantitative microstructure analysis based on the segmentation results
and mechanical properties will be studied.
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Chapter 2

Theoretical background

2.1 Steel

Steels are among the most utilized materials because of its wide range of properties and availability.
It is an iron-based alloy, whose main alloying element is carbon. The versatility of steel is closely
related to iron’s crystalline structure.

Pure Iron exists in different crystalline structures or allotropes. Body centered cubic (BCC)
also known as ferrite (α); Face centered cubic (FCC) known as austenite (γ) and hexagonal closed
packed (ϵ). High temperature ferrite, known as delta ferrite (δ) exists at high temperature and
is considered as a fourth allotrope, although its crystalline structure is not different from (α)-
ferrite [11]. However, only austenite and ferrite are of technological relevance, as the hexagonal
allotrope exclusively exists at very high pressure. Both (γ) and (α) have tetrahedral and octahedral
interstices. In steel, some of these places are occupied by carbon, which acts as an interstitial solute.

The wide variety of steel grades available is the result of decades of research and development.
There are dozens of alloying elements that combined with carefully designed thermomechanical
treatments make it possible to achieve application tailored properties. The chemical composition
and the manufacturing process determine the microstructure, which is linked to the behaviour of
the material. Second phases and lattice strain, for example, act as barriers for dislocation movement
and thus result in increased strength [12]. Therefore, it is important to be able to characterize the
microstructure precisely and objectively. To do so, the different phase transformations and typical
microstructures found on steel must be understood.

2.1.1 Phases and phase transformations

During cooling, the primary solid phase to form in steel is austenite. Although (δ)-ferrite may
also be formed, it is less relevant in the steel production processes. In autenite’s FCC structure,
carbon occupies the octahedral holes. It is important to note that although the austenite has a
more compact packing than ferrite, it also has larger interstices, which results in a higher car-
bon solubility. Starting from the austenitic field, different solid state phase transformations might
take place, depending on the chemical composition of the steel and cooling conditions. These
can be classified according to the atomic movement mechanism. In reconstructive transforma-
tions, the atomic bonds are broken, and the atoms then rearrange in a different pattern through
diffusion. However, diffusion is a thermally activated process and its rate shows an exponential
dependence with temperature. As a consequence, reconstructive phase transformations are only
possible at high temperatures, where thermal energy provides enough atomic mobility to rearrange
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the atoms. Displacive phase transformations are instead difussionless and occur as a consequence
of coordinated atom motion without breaking the bonds [11]. The difference between these two
mechanisms is schematized in figure 2.1. Different transformation mechanisms lead to different
phases and microstructures, which consequently define the properties of the material.

Figure 2.1: Reconstructive and displacive phase transformation mechanisms [11].

The phases that are formed by slow cooling of steel can be seen in the Iron-Carbon diagram
shown in the figure 2.2. This is a metastable equilibrium diagram between pure iron and the iron
carbide known as cementite (Fe3C) instead of the thermodynamic equilibrium with graphite. True
equilibrium is not typically reached in steels because the time needed for diffusion and precipitation
of graphite is too long. Cementite has an orthorhombic crystalline structure and a composition of
6.67 wt% carbon. It is very hard but also brittle.

The iron-carbon system has an eutectoid point (S) at 0.76 wt% and 727 °C (also known as Ae1

temperature). In an eutectoid transformation, one solid decomposes into two different phases. In
steels, the eutectoid microstructure is known as pearlite, a lamellar mixture of ferrite and cementite.
This is a reconstructive reaction that initiates mostly at austenite grain boundaries but can also
start at other energetic sites such as inclusions. Nucleation of ferrite leads to carbon enrichment
of the surroundings, which induces nucleation of cementite. As the process repeats, the lamellar
structure is formed [13]. It is important to note that at lower temperatures or faster cooling
rates, the interlamellar spacing is reduced because of the limited diffusion. This generates a harder
pearlitic phase. Another characteristic temperature in the phase diagram is Ae3 which indicates
the transformation from austenite to ferrite. Ae3 for pure iron is 912 °C (G) and decreases as the
carbon content increases.
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Figure 2.2: Iron - carbon equilibrium phase diagram. Solid black lines represent the metastable
equilibrium with cementite and red dotted lines the thermodynamic equilibrium with graphite

[14].

Regarding their carbon content, steels can be classified as hypoeutectoid, eutectoid or hyper-
eutectoid. After slow cooling, hypoeutectoid steels (less than 0,76 wt% C) exhibit a combination
of ferrite and pearlite, eutectoid steels are fully pearlitic and hypereutectoid steels constituents
are pearlite and cementite. When hypoeutectoid steels are slowly cooled from the austenitic field,
proeutectoid ferrite nucleates at austenite grain boundaries and grows into them [11]. Carbon is
then rejected to the remaining austenite until it reaches the eutectoid composition. Subsequently,
the remnant austenite transforms into pearlite, resulting in a ferritic-pearlitic microstructure. As
the carbon solubility of ferrite at ambient temperature is very low, ferrite is almost pure iron and
thus soft and ductile.

The materials utilized in this work can be classified as low carbon steel, which is a sub type
of hypoeutectoid steel characterized by a carbon content lower than 0.25 wt% [11]. Within this
group, a wide range of properties can be achieved, ranging from cost effective plain-carbon steels
to high performance high strength low alloy steels [11].

There are other phases that can exist in steel because of non-equilibrium conditions. A time-
temperature-transformation (TTT) diagram (see figure 2.3) can be used to predict non equilibrium
constituents. These plots show the isothermal phase transformations of a given material as a
function of temperature and time. In the case of steels, bainite and martensite are the two most
important non equilibrium microstructures.
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Figure 2.3: Steel TTT diagram [13].

Bainite forms at temperatures in which diffusion of iron and substitutional alloying elements is
very limited, yet carbon diffusion still takes place. Its growth initiates as carbon supersaturated
ferrite forms at austenite grain boundaries through a displacive mechanism. Due to its complex
nature, the classification of bainitic microstructures is still a topic of debate. The most classical
approach distinguishes two bainite types depending on the formation mechanism, as it is shown in
the figure 2.4. In upper bainite (UB), the carbon partitions into the surrounding austenite and then
precipitates as cementite between the bainitic ferrite plates. In the lower bainite (LB), instead,
the ferrite supersaturates in carbon, followed by cementite precipitation within and between the
sub-units [15]. Because of this, UB is stronger than LB [13]. However, there are more complex
classification systems that also consider the nature of the second phase as well as the precipitates
distribution in the microstructure, resulting in up to 5 bainitic subclasses: granular bainite, upper
bainite, degenerate upper bainite, lower bainite and degenerate lower bainite [16].

Figure 2.4: Upper and lower bainite growth mechanism [17].
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Martensitic microstructure is the result of the martensitic displacive transformation that takes
place in steel at lower temperatures, in which diffusion of either interstitial or substitutional solutes
is not possible. Martensite is a supersaturated solution of carbon in ferrite [13] that has a body
centered tetragonal (BCT) structure. Two types of martensite can be distinguished, depending
on the carbon content of the austenite from which it is formed. Lath martensite in low carbon
steels and plate martensite in high carbon steels, as it is shown in the figure 2.5. It is important to
note that the martensitic transformation is very fast and diffusionless. In technological processes,
the percentage of austenite that converts into martensite does not depend on the time, but only
on the temperature. There is a well-defined temperature at which the transformation starts (Ms)
which decreases as the carbon content of the austenite increases [11]. Under certain conditions,
if the carbon content is high enough so that the temperature for complete transformation (Mf )
lies below ambient temperature, retained austenite might be present in the microstructure. In
this context, retained austenite refers to a metastable austenitic phase, that can exist at room
temperature due to kinetics restrictions and strain constrains as a consequence of the martensitic
transformation [18]. The martensitic transformation generates elastic strain in the atomic lattice,
which restricts the dislocation movement and contributes to martensite’s high hardness. However,
as it is too brittle for most technological applications, a heat treatment known as tempering can
be applied to increase toughness through carbide precipitation and elastic strain relief [13].

Figure 2.5: Low carbon Lath martensite (left) and high carbon Plate martensite (right)
microstructures [12].

2.1.2 Thermomechanical treatments

Thermomechanical treatments are used in steel to alter their mechanical properties. This is
achieved by applying heat and mechanical deformation to the material in a controlled manner.
As a consequence, microstructural parameters such as the grain size, phases present and precipi-
tate distribution can be modified.

For example, after cold working the defect concentration on the material increases, as the grains
become more elongated due to the plastic deformation. This results in work hardening and reduced
ductility [11]. If the material is then heated, a recrystallization process takes place. The defects
introduced during cold working increase the internal energy (U) of the material and act as the
driving force for nucleation and growth of new grains. This process can be used to achieve grain
refinement and partially regain the original ductility [19].

An example of the application of these principles is thermomechanical rolling. Rolled steels
are extensively used and the object of study of this work. During the rolling process, steel slabs
produced by continuous casting are reduced in thickness by passing them through pairs of rolls
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with a gap smaller than the original thickness. The process starts by heating the slabs to the
austenitic range. This allows the homogenization of the chemical composition and the dissolution
of alloying elements while increasing the workability of the steel. Recrystallization might also take
place and results in a grain size refinement which leads to better mechanical properties [20].

As shown in the figure 2.6, there are different rolling procedures characterized by their rolling
temperatures and thermal cycles, that lead to different microstructures and properties.

Figure 2.6: Rolling procedures [20]. N = normalized, Q = quenched, TM = thermomechanical,
ACC = Accelerated cooling, DQ = direct quenched, QST = Q + self tempered.

Traditional rolling, shown in 2.6 A, takes place at a temperature in the recrystallization range
γrecr. and is followed by cooling in air. This procedure only aims to achieve the desired geometry
of the plate, without a controlled change in microstructure. The plate can then be reheated and
normalized (N) (2.6 B). This treatment leads to a ferritic-pearlitic microstructure because of the
slow cooling in air.

Another option is to quench (Q) the steel. This refers to the process of heating it to the
austenitic range and then cooling it rapidly in water, reaching Ms temperature before the austenite
transforms into ferrite and resulting in a martensitic microstructure. The quenching is often
followed by an annealing stage that results in carbide precipitation and increased toughness.

The procedures known as thermomechanical rolling (TM) are shown in 2.6 D, E, F and G.
Here, the rolling temperature is carefully chosen to achieve a specific combination of properties
by the end of the process. By rolling below the recrystallization temperature, the deformation is
accumulated in the material, resulting in work hardening.

In treatments F and G, an additional step known as Accelerated Cooling (ACC) is applied.
This process involves cooling down the plates using a system of high-pressure water jets. The
modification of the water flow results in different cooling rates and temperature gradients across
the plate’s thickness, leading to differences in the microstructure.

An important consideration regarding rolled plates is their microstructural gradient. When
the plates are cooled down, temperature decreases faster near the surface, generally leading to
a finer microstructure with low temperature transformation products and higher strength in this
region [21]. However, another characteristic of rolled plates is the presence of centerline segregation
as a consequence of the solidification process during the continuous casting. Segregation occurs
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because most of the alloying elements have a lower solubility in the solid than in the liquid phase.
Therefore, as solidification takes place from the surface of the slab towards the core, the alloying
elements are rejected to the remaining liquid, increasing its solute concentration in the center
[22]. While this phenomenon can be controlled by optimizing the parameters of the continuous
casting process and the thermal treatments during rolling, it is often not completely avoided. The
center line segregation usually leads to a higher strength and hardness on the center of the plate,
accompanied by a lower fracture toughness [23].

One example of the application of thermomechanical rolling is the production of dual phase
steels. The microstructure of these steels consists of a mixture of a softer (usually ferrite) and a
harder (usually martensite) phase. This can be achieved by inter-critical annealing between Ae1

and Ae3. During this process, a portion of the austenite is allowed to transform into ferrite and
the remaining austenite is then converted into martensite. The main advantage of these steels is
their combination of high formability with elevated strength [11].

To ensure the quality of the products and achieve consistent results the process parameters
must be closely monitored and samples from the finished plates must be regularly analyzed in a
metallography laboratory.

2.2 Metallography

Quantitative microstructural evaluation plays a pivotal role in quality control. With the advance
of microstructural complexity and more strict specification requirements, the microstructure of
materials must be closely analyzed to ensure the desired performance. The different phases and
microstructures present on steel can be analyzed using different metallography techniques.

To do so, samples are mirror polished, etched using an acidic solution and observed under
a microscope. Etching can be understood as a process of controlled corrosion used to contrast
the different microstructural constituents [24]. Every constituent in the sample is attacked at a
different rate, therefore creating a raised relief on the surface. There are different etching solutions
that can be used to highlight different aspects of the microstructure. Nital is one of the most
popular etchants for steels, as it can be used to reveal the different phases and grain boundaries
[24]. It is usually a solution of 1 to 5% nitric acid in ethanol. It is important to be aware that
the etching results are influenced by the quality of the polishing, the concentration of the solution,
the time of exposure, the environmental conditions, and the microstructure itself. This makes it
difficult to achieve consistent results for different samples. Once the sample is etched, it is observed
on the light optical microscope (LOM).

Metallographic light optical microscopes generate an image from the sample by reflecting light
on its surface (see figure 2.7 (a)). During structural etching, the solution removes material from the
different regions at different rates, thus revealing the microstructure, as it is shown in figure 2.7 (b).
For example, as discussed before, grain boundaries will be preferentially attacked by nital etching.
As a result, when observed in the microscope, they appear darker because a higher fraction of the
incident light is scattered. However, grains of uniform composition such as ferrite or cementite
have a smooth surface after etching, reflect a big fraction of the incident light and appear bright
under the microscope [19]. Therefore, to be able to differentiate them, morphological features such
as the size or aspect ratio must be considered.
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(a) Reflexion light optical microscope
schema [25]

(b) Etching generated contrast in LOM
[26]

Figure 2.7: Light optical microscope light path and contrasting mechanism.

Microscopes are complex devices that offer a wide range of configurations that affect the way
the microstructure is shown. The optical system of a LOM is composed of the objectives and
the eye piece. Different objectives are used for different magnifications and have different working
distance, numerical aperture, resolving power and depth of field [24].

Resolving power represents the minimum distance at which two points can be perceived as
separated. According to abbe’s theory (eq. 2.1), it is limited by the wavelength of the visible light
used (λ) and by the numerical aperture of the lens (NA), which depends on the refractive index of
the medium (n) and the collection angle of the lens (Θ) [27]. Taking this into account, resolving
power (d) in optical microscopy cannot be higher than 0.2 µm.

d =
λ

2n · sin(θ)
=

λ

2 ·NA
(2.1)

This can be a problem when trying to differentiate microstructures such as pearlite if the
interlamellar spacing is too small or bainite as the individual plates within the sheaves are also
irresolvable. In these cases, the nodular appearance of the pearlite compared to the sheaf structure
of the bainite can help to distinguish them [15].

Another crucial aspect of light optical microscopy is the illumination system, whose main
components are the light source, aperture diaphragm, and field diaphragm. The intensity of the
light as well as the opening of both diaphragms must be set by the metallographer and can severely
affect the quality of the results. The aperture diaphragm affects the resolution and contrast in
the micrograph, and its optimal value is related to the numerical aperture of the objective. If the
aperture is too small, there is a loss in resolution and if it is too large there is a loss in contrast.
The field diaphragm instead controls the field of view and must be carefully set to minimize glare.

The topography of the sample also must be considered as it affects the diffraction and scattering
of the incident light. Etching intensity plays an important role in it, as more etched samples exhibit
a bigger height difference between the constituents. However, if the topography features are too
small, like the carbide distribution in lower bainite, for example, it is not possible to resolve them
with the LOM. While LB usually has a darker etching response because of this [15], consistent
classification is not always possible.

Lastly, there are also several software-controlled parameters that add one more layer of com-
plexity, as it is necessary to transform the photons reflected from the sample into a digital repre-
sentation. White balance allows the calibration of the different color channels intensity to reduce
color bias [28], gain amplifies the signal from the camera sensor, exposure time controls the amount
of light that the sensor receives from the sample and gamma correction adapts the camera output
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to the way the human eye perceives light [29]. All these parameters also influence the appearance
of the microstructure in the images that are later used for analysis.

All the above-mentioned variables contribute to a very high variance in micrographs, which
makes even more complex the task of consistent and reliable microstructural characterization. The
expertise and criteria of the metallographer also comes into play and the subjectivity of the results
is even bigger for complex structures, such as different classes of bainite to which there is no clear
consensus for labeling and classifying [7].

A way to complement optical microscopy is the utilization of electron microscopy. The scanning
electron microscope (SEM) uses a beam of electrons that generates several signals that can be used
to characterize the sample, as it is shown in the figure 2.8. The main advantage of the SEM over
the LOM is the increase in resolution. As the wavelength of the electrons is much shorter than that
of the visible light, the resolution power increases, making it possible to distinguish small features
that are irresolvable in the optical microscope. The combination of different sources of data to
characterize a sample is known as correlative microscopy and constitutes a powerful tool to assign
the ground truth (expected output) for machine learning models [30].

Secondary electrons detectors are particularly useful in this context, as they reveal the surface
topography from the sample. There are two main variants: the conventional Everhart-Thornley
detector and the In-Lens detector. While both target the electrons generated from the primary
electron beam interaction with the sample and reveal surface topography, the In-Lens detector
provides a better signal to noise ratio and higher spatial resolution [31].

Figure 2.8: Signals generated by the scanning electron microscope [24].

Quantitative evaluation of microstructures from micrographs has the intrinsic complexity of
viewing only a 2D section of a 3D microstructure. In consequence, factors such as anisotropy from
the rolling need to be considered at the moment of the analysis. The appearance of the same
microstructural component may be completely different depending on the plane from which it is
viewed.

Several techniques have been developed to achieve a consistent quantitative microstructural
analysis, however, the subjectivity of the metallographer cannot be eliminated. As it has been
shown in other studies [32], the variation in expert judgment of microstructures can be significant.

On top of the challenges associated with constituent identification, the determination of second
phase fraction is a very time-consuming process. Before computational analysis was feasible, this
was done by hand according to the ASTM E562 standard by means of point counting [33]. This
method consists of superimposing a grid of points over the micrograph and counting the amount

19



of them that are over the constituent of interest. Variables such as the magnification, the number
of fields (micrographs) and points on the grid determine the compromise between the effort needed
and the precision of the results.

The same approach is used by image analyzers [34]. These softwares can save time and resources,
but if the contrast between the phases is not enough or if the second phase is not correctly identified,
the results are not representative of the sample.

To use an image analyzer, the image needs to be segmented, that means that the pixels need to
be assigned to a class. The simplest way to achieve this is through a threshold (see figure 2.9). A
threshold is an intensity value that serves as a criterion for distinguishing the classes on the image.
There are several methods to define this value. It can be manually selected or using an algorithm
that considers the histogram distribution of the pixel intensity values for its computation. In more
complex approaches, the neighbors’ pixels might also be considered, or different thresholds applied
to different regions of the same image [35]. The result of the threshold segmentation is a binary
image where all the pixels with a gray value lower than the threshold are set to black and all the
pixels with a higher value are set to white.

However, thresholding techniques fail to deliver good results when the gray values of the classes
overlap, the intra class variance is too high, or if there are shadings in the picture. This motivates
the utilization of artificial intelligence techniques, that can consider several features of the picture
to give an objective and reproducible quantification of the microstructural features of a sample.

(a) Input image (b) Threshold segmentation
Figure 2.9: Threshold segmentation results on rice grains [36]. Undetected grains at the bottom

are a consequence of the threshold techniques limitations.

2.3 Machine learning

Machine learning is a sub-field of artificial intelligence, framed in the field of computer science,
which includes a set of techniques that involve the use of data and empirical information to build
models without these being explicitly programmed [37]. However, traditional coding remains
essential for tasks such as defining the model’s architecture and processing data. The absence of
explicit programming refers to the way machine learning algorithms mimic human decision-making
by learning features from data through statistical modelling to predict future values, rather than
following explicit commands for specific tasks [9]. In recent years, these techniques have experienced
an exponential increase in popularity, which has led to their implementation in different fields,
including materials science.
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Machine Learning algorithms can be classified according to the information used to create the
model. The models are trained with a data set, which consists of data points known as instances.
Each instance has associated features or properties. The target is the feature to be predicted [38].
In supervised learning techniques, learning is done from annotated data. This means that the
algorithm is provided with the expected output for each instance, which is known as the ground
truth. In unsupervised learning, on the other hand, the algorithm is responsible for identifying the
patterns in the data to produce an output [9]. In general, supervised learning is used when the
outcomes are known, and the model learns the relationship between the input variables and the
expected output. Unsupervised learning, on the other hand, is useful to discover the structure of
the data and its underlying connections [9].

Another way to classify machine learning algorithms is based on the type of task they perform.
In regression problems, the model predicts the value for a continuous variable. The simplest
example of this is linear regression, that assumes a linear relationship between the input and the
target variable. However, regression models can also be used to identify more complex relationships
between the features. The goal in every case is to find the best trend line to fit the data [9].

Classification algorithms on the other hand predict a category or class for each instance of
the data, from a finite number of classes [39]. The task concerning this work is semantic image
segmentation. Segmentation techniques are used to divide images into meaningful regions, setting
the boundaries between them and the background [40]. Segmentation models perform a pixel-wise
classification. In other words, every pixel is assigned to a class. In semantic segmentation, no
distinction is made between objects belonging to the same class, but this problem is addressed by
instance segmentation models. A summary of the object recognition techniques can be seen in the
figure 2.10.

(a) Image classification (b) Object localization

(c) Semantic segmentation (d) Instance segmentation
Figure 2.10: Image recognition techniques [41].
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2.3.1 Artificial neural networks (ANN)

Artificial neural networks are machine learning algorithms that mimic the functioning of biological
neurons. The neurons are arranged in layers, where the first one holds the input data; the last
one the output, and the layers in between are known as hidden layers. There are different types of
artificial neural networks. The simplest ones are fully connected feed forward neural networks. In
these, all neurons from one layer are connected to every neuron of the next one, as shown in figure
2.11.

Figure 2.11: Feed forward neural network schema [42]

The information transmission from one layer to the next one takes place in two steps. First,
the input ’X’ is affected by a weight and a bias, to give the output of the neuron zi (eq. 2.2). The
output is then transformed by an activation function f(zi) (eq 2.3), and the activation value ’a’
is transferred to the next layer neuron zi+1 (eq. 2.4). The weights (Wi) and biases (bi) are the
trainable parameters that are iteratively optimized during the training of the network in order to
achieve the best possible fit to the expected output.

z2 = W1 ·X + b1 (2.2)

a2 = f(z2) (2.3)

z3 = W2 · a2 + b2 (2.4)

When an input image is run through the network the output is compared to the ground truth
(expected output) and a cost function is computed. There are different cost functions, but all
accomplish the same task: determining how far away is the model’s prediction from the expected
output. The gradient of the cost function with respect to the parameters is then used to update
the weights and biases of the network. This is done using a backpropagation algorithm that
computes the derivatives of the cost function with respect to the trainable parameters through
partial derivatives from the last layer to the first one according to the chain rule. The bigger
the gradient, the bigger the modification to the parameter, as shown in the equations 2.5 and
2.6. Where C is the cost function, ϵ the learning rate and the superscript indicates the iteration
number. The bigger the learning rate the bigger the changes to the parameters on every iteration.
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A bigger learning rate may lead to a faster convergence of the model. However, if it is too big, the
minimum of the cost function may never be reached. This problem is known as overshooting.

W j+1 = W j − ϵ · ∂C

∂Wj
(2.5)

bj+1 = bj − ϵ · ∂C
∂bj

(2.6)

The same principle applies to convolutional neural networks, which are used for image process-
ing and computer vision tasks. In contrast with fully connected neural networks that take vectors
as inputs, convolutional neural networks are designed to work with matrices. As the natural rep-
resentation of an image is a matrix with its pixels values, the use of convolutional neural networks
makes it possible to maintain the spatial correlation of the features from the images across the
layers.

A convolution is a mathematical operation that consists of element-wise matrix multiplication.
The convolutional filter is a much smaller matrix that multiplies the image matrix, giving a feature
map as a product. By doing this, the spatial relationship between the pixels in the image can be
detected and used to extract relevant features for the segmentation [9]. The convolutional filters
are iteratively optimized during the network training to extract relevant features that improve the
performance on the given task.

Deep learning architectures

Deep learning techniques use several layers of neurons, with multiple filters on each one. The
feature maps created are fed into the next layer and the last one performs the segmentation [9].
The two relevant deep learning architectures for this project are DenseNet-201 and U-NET.

DenseNet-201 [43] is a convolutional neural network architecture, schematized in figure 2.12,
that introduces dense blocks in which all the layers are interconnected with each other, rather than
just the adjacent ones. This way, all the feature maps from previous layers are fed as input to
the next one. This approach proved to reduce the number of trainable parameters needed in the
network by reducing the number of filters in each layer. Moreover, as the earlier feature maps are
concatenated to the later layers, feature propagation is improved. The network includes a total of
201 layers and achieved an outstanding performance on the Image-Net classification data set [44].

Figure 2.12: DenseNet architecture [43].

U-NET is a popular architecture for image segmentation schematized in the figure 2.13. It has 23
convolutional layers. As there is no fully connected layer, it can be classified as a fully convolutional
neural network [45]. Its name comes from the shape of the architecture that resembles an U, where
the left side is the contracting path or encoder and the right side the expansive path or decoder.
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Figure 2.13: U-NET architecture [45].

Each arrow represents a step in the architecture. The different types of operations shown are:

• Convolution 3x3, ReLU: it is a convolutional operation, where 3x3 refers to the size of the
convolutional filter matrix. Rectified linear unit (ReLU) is the activation function of the
neurons. The activation function defines the final activation for the node. In this case, the
ReLu can be expressed as:

ReLu(x) = max(0, x) (2.7)

This means that if the convolution results in a number lower than 0, then the neuron output
is equal to 0 and if the result is positive, then the neuron activation is equal to the convolution
result.

• Copy and crop: These steps are known as skip connections and copy the early activation maps
into deeper blocks. This is the most distinctive characteristic of the network and results in
a more efficient segmentation due to the utilization of different levels of abstraction in the
same layer. [40]

• Max pool 2x2: The max pooling operation consists in the compression of a region of the
Input matrix (2x2 in size in this case) by taking its maximum value [40]. This process is
known as down-sampling because the size of the feature maps is reduced. As a result, the
kernel of the next layer covers a bigger section of the original image, allowing it to detect
features on a bigger scale [40].

• Up-convolution 2x2: it is an up-sampling convolution operation, which results in an increase
in the size of the feature maps. The number of upsampling convolutions needs to match the
convolutions in the encoder or contracting path so that the final size of the feature maps
matches the input size of the image and gives a pixel wise classification as output.

• Convolution 1x1: It is the last step of the architecture which condenses the feature maps into
the probability of each pixel to belong to an specific class. This is done through the SoftMax
activation function, shown in eq. 2.8.
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Softmax(zi) =
exp(zi)∑K
j=1 exp(zj)

(2.8)

Where zi is the output from the neural network corresponding to the ith class, and
∑K

j=1 exp(zj)

is the sum of the exponentiated outputs over all classes K. The exponentiation ensures that
each output is positive, and the summation normalizes the result, giving the probabilities.

2.3.2 Network training

One challenge when working with deep learning models is the availability of training data. This
can be because of limited access to source images or because the annotation process is too time
consuming.

Annotation is the way to produce the masks needed for model training. These masks are the
ground truth or expected output for the model prediction. In segmentation tasks, the masks consist
of pixel-wise classified images, a process that can be highly time consuming when done manually.
Moreover, due to the complex nature of the microstructures and the high number of second phase
objects, achieving a 100 % accuracy is not feasible. Moreover, identifying the nature of the second
phase is already a challenging task. That is the reason why correlative microscopy approaches are
often used to address this issue [30].

Depending on the architecture of the network and the nature of the task, several thousand
images might be needed to train a model. There are two useful tools to mitigate this problem:
Transfer learning and data augmentation.

Transfer learning means taking the weights of a pre-trained network to start the training of
the new one. This has been proven to reduce the number of pictures required to converge and
to reduce the computational cost of the training. Furthermore, it is desirable but not necessary
that the tasks of both networks are similar. For example, Napel et al successfully used the trained
weights from ImageNet to classify malignant and benignant tumours [46]. Even using weights from
classification networks has been proven useful for segmentation models [41].

To take advantage of the Image-Net trained weights of DenseNet-201 while maintaining the
architecture of U-NET, transfer learning using the segmentation models library [47] can be utilized.
It allows the importation of the DenseNet-201 encoder as backbone with the trained weights. By
setting these weights as non-trainable, the amount of computational power needed to train the
network is reduced, as only the weights of the decoder or expansive path need to be updated.

Data augmentation on the other hand is the process of applying transformations to the images
in the data set to increase the amount of data that is available to train the model. There are
different types of transformations that include translation, shearing, distortion, crop, etc. These
can be implemented using the ’Albumentations’ open source library available for Python [48]. The
intensity and amount of augmented data influences the performance of the model. In most cases,
leading to faster convergence and better generalization capabilities. Furthermore, it can help to
balance the classes representation in the dataset to avoid favoring the most frequent class [49].

Once the dataset, network architecture, backbone for transfer learning and data augmentation
parameters are established, the data set is divided into training, validation, and testing sets and
the training of the network takes place.

The training dataset consists of input images and their corresponding masks, which are used
during training to update the model parameters, aiming to minimize the difference between the
predictions and the ground truth. Similarly, the validation dataset also consists of input images
and their masks, which are used during training as a measure of the model’s performance on unseen
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data, as it is not used to update the model’s parameters [38].
This data splitting aims to detect and reduce overfitting problems, where the model learns

the features of each instance from the training data set but has no generalization capabilities.
Therefore, while achieving optimal metrics in the training dataset may be a good indicator, poor
performance on the validation data set can be a sign of overfitting [38].

During training, the training dataset is further divided into batches, which are run through the
network. At the end of every batch, the cost function is calculated, and the weights updated. Every
time the whole data set runs through the model, one epoch is completed. The batch size, number
of epochs and learning rate are hyperparameters that are set before starting the training of the
network. They are experimentally tuned to achieve the best results, but they are also constrained
by the computational power available.

As the loss function itself is not easily interpreted, training metrics are calculated to estimate
the performance of the model. One of the most popular metrics is intersection over union (IoU),
also known as Jaccard Index. If A is the segmentation mask and B the ground truth, then IoU
is defined as the quotient between the overlay area and the union area of both [50], as shown in
equation 2.9. It can take values between 0 and 1, where 0 is completely wrong prediction and 1
perfect prediction.

IoU = J(A,B) =
|A ∩B|
|A ∪B|

(2.9)

Lastly, the testing dataset consists of images that were not used during training and are em-
ployed to evaluate the final model performance. At this instance, masks can still be utilized but
are no longer necessary. While quantification of deep learning predictions uncertainty is still a
challenging problem [51], a practical approach to evaluate the model robustness is to analyze the
performance on non-optimal images [6]. If the model shows a satisfactory and consistent perfor-
mance despite the introduced variance, it is an indicator of robustness. Manageable variance is
critical in machine learning models, especially for complex task such as segmentation of similar mi-
crostructures. The variance the model can handle is mostly determined by its representation in the
training data, which should be aligned with the variance expected during model implementation
[52].

2.3.3 Machine learning in materials science

Machine learning techniques have numerous applications in materials science, covering a wide range
of topics.

For example, deep learning methods have been employed to correlate atomic structures with
properties such as interatomic potentials [53] and formation energies [54]. Schmidt et al. published
a detailed review of property predictions using machine learning techniques, ranging from band
gap to melting temperature [55].

Other machine learning applications include structural information prediction from x-ray diffrac-
tion patterns [56], automatic segmentation of dislocation in nickel superalloys [57], multicomponent
alloy design optimization [58] and warpage prediction of 3D printed parts [59].

Moving into steel microstructure characterization, machine learning has also been extensively
used to process microscopy images.

Tsutsui et al. developed a classification model based on textural parameters to classify low
carbon steel microstructures including martensite, upper and lower bainite. They used two different
SEM microscopes and found that the models trained on one didn’t have a good performance on
the other, as the relevant features on the images changed [4].
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Gola et al. combined SEM and LOM (correlative microscopy) images to extract textural,
morphological, and substructural parameters of second phase objects for classification [10]. On
the same line of work, Jaime et al. developed classification algorithms based on textural and
morphological parameters from SEM and LOM images capable of successfully classifying pearlitic,
bainitic and martensitic constituents through support vector machines [60]. One step further,
Vega developed a series of machine learning algorithms for classification of bainitic and martensitic
objects using random forest, support vector machine and convolutional neural networks, using
correlative microscopy as data source [61].

Müller et al. achieved high accuracy for classification of different bainitic microstructures using
textural parameters from SEM images with a support vector machine [7]. One step further, Müller
et al also developed a classification model based on a support vector machine for classification
of seven microstructural classes: pearlite, martensite and 5 bainitic subclasses. To do so, SEM
images, textural features and morphological parameters were used, achieving an 82.9% correct
classification [5].

Bachmann et al. used several machine learning techniques both for classification and segmen-
tation of steel microstructures and was able to successfully use the results for correlation with
processing parameters and mechanical properties. Correlative microscopy and different contrast-
ing techniques were employed to characterize the samples [62]. Bachmann et al. also developed
a deep learning model for segmentation of prior austenite grains from nital etched light optical
micrographs [6].

Müller et al. provided a comprehensive overview of the state of the art in machine learning
image processing for steel microstructures [52].

The different approaches differ both on the type of algorithms utilized and the information
employed as input. For support vector machines and random forest models, the features must
be previously selected (feature engineering), and they can either be morphological, textural or a
combination of both. Whereas for deep learning algorithms, the feature extraction is done inside
the neural network, without any external influence.

The main advantage of the conventional machine learning algorithms is that the relevant fea-
tures can be traced back to the images and thus correlated with the results. However, deep learning
approaches make it possible to incorporate patterns in the data that might be unseen to the person
training the model.
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Chapter 3

Experimental procedure

3.1 Workflow and overview

The experimental work of this project was carried out in the research and development division of
the AG der Dillinger Hüttenwerke, a steel mill located in Germany, using materials and equipment
provided by them. The main product of this company are heavy plates, which are employed in
different industries including piping, ships, heavy machinery, etc [63]. The facilities of the company
include blast furnaces, continuous casting and rolling mills, which allows an integral control of the
product. A quality control department performs metallographic analysis to probes cut-out from
the plates, using mainly light optical microscopes and nital etched samples.

The main objective of the project is to upscale a computational tool to perform a quantita-
tive microstructural analysis of dual phase steels. This model should be capable of performing
consistently on an industrial scale to be implemented in quality control processes.

The models perform multi-class semantic segmentation. Taking LOM as input and producing
a mask that contains the assigned class for every pixel (matrix, pearlite, and bainite/martensite)
as output. From this data, the nature of the second phase, its percentage and morphological
parameters of the particles can be estimated.

In order to upscale the existing models, an iterative approach was employed. This resulted
in three generations of models, that were tested using images from industrial grade steel samples.
Finally, the results from the last model were used to perform a quantitative microstructural analysis
and to establish hardness correlations with the model output. These concepts will be further
explained in the following sections.

To analyze the results from the models, different visualizations were produced, shown in figure
3.1. Figure 3.1 (a) shows the light optical micrography as it is used for input. The output from the
network, visualized in figure 3.1 (b), is a probability map. As suggested by its name, probability
maps contain the probability of each pixel belonging to every class. As there are three segmented
classes, the probabilities are shown on a single color channel: green for matrix, blue for pearlite and
red for bainite and martensite. These probability maps are then used to generate the final output
from the model, the segmentation masks (3.1 (c)). They contain only three pixel values: Yellow
for the matrix, blue for pearlite and red for bainite and martensite. In order to better evaluate
the model’s performance, the input image and the segmentation mask are overlayed, as shown in
figure 3.1 (d). Finally, the last representation, shown in figure 3.1 (e), only displays the individual
objects in different colors. These are used to calculate the morphological parameters of the particles
which are calculated for both second phase classes. Therefore, only bainitic/martensitic or pearlitic
objects are displayed.
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(a) Input image (b) Probability map

(c) Segmentation mask (d) Overlay

(e) Detected pearlitic objects
Figure 3.1: Different visualizations employed.
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3.2 Metallographic sample preparation

Metallographic specimens were prepared from different grades of rolled steels produced at the
Dillinger Hütte steel mill . The samples selected contain a two-phase microstructure, which is the
target of the models. Different thermomechanical treatments and chemical compositions among
the selected samples make it possible to cover a wider range of appearance of the constituents,
which is crucial to test the model’s generalization capabilities. This means, the performance on
unseen samples which are not exactly as the ones used for training. The samples used are detailed
in table 3.1

Table 3.1: Samples analyzed.

Sample Plate thickness (mm) Carbon content (wt. %) Second phase

1311 23.7 0.0525 Bainite / Martensite

1317 23.7 0.0525 Bainite / Martensite

1449 23.7 0.057 Bainite / Martensite

1453 23.7 0.057 Bainite / Martensite

B250 120 0.141 Pearlite

C925 100 0.174 Pearlite

E528 90 0.133 Pearlite

H687 20 0.05 Bainite / Martensite

M810 20.5 0.042 Bainite / Martensite

As explained before, it is expected to find a microstructural gradient across the sample thickness,
originated due to segregation and differences in the cooling rate. In order to determine whether
the model is capable of detecting these differences or not, the samples were cut perpendicular to
the rolling direction, as shown in figure 3.2.

Figure 3.2: Sample extraction schema. The extracted probes include the whole plate thickness.
RD=rolling direction, TD=transversal direction, ND=normal direction. Adapted from [64].

Multiple grinding and polishing steps are necessary to obtain an even surface, suitable for
etching and microscopical evaluation of the samples. These steps are summarized in table 3.2.
During the cutting process, damage is done to the specimen surface in the form of deep scratches
and plastic deformation. Therefore, a sequence of abrasives is used to remove this damaged layer.
With each step, progressively finer abrasives are used to eliminate the scratches from the previous
stage, reducing the thickness of the deformed layer [24].
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This process was carried out on a QATM Qpol 300 M2 manual grinding and polishing machine
using a rotational speed of 150 RPM. The differences between grinding and polishing are shown in
figure 3.3. Grinding is done with bonded abrasives. For this project, resin bonded diamond steel
grinding discs were used. During grinding, the sample is held in a fixed position over the rotating
disc. Once a uniform scratching pattern is achieved, the sample is rinsed in water and the next
step is performed, rotating the sample 90° between steps. Grinding is followed by polishing. For
polishing, a loose abrasive is used on top of a polishing cloth. In this case, diamond suspensions
were employed. During this process, the sample is moved on an oval pattern over the rotating
disc, counter to its rotation direction. Once all the scratches from the grinding are eliminated, the
sample is rinsed using ethanol, dried with a hot air blower and a last polishing step is performed
using a suspension with smaller particles, until mirror finish is achieved. The sample is one more
time rinsed and dried and the results from the polishing are evaluated in an optical microscope,
ensuring that no scratches are visible. The appearance of the surface after grinding and polishing
is shown in figure 3.4.

Table 3.2: Metallographic sample preparation steps.

Process Abrasive Time (min)

Grinding

Struers MD Piano 220 2

Struers MD Piano 500 2

Struers MD Piano 1200 2

Struers MD Piano 2000 2

Struers MD Piano 4000 2

Polishing
3 µm Struers Diaduo 2 3

1 µm Struers Diaduo 2 5

Figure 3.3: Working mechanisms in grinding and polishing. Adapted from [65].
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Figure 3.4: Micrographs of scratches from the metallographic preparation process. Top: grinding,
bottom: polishing [24].

The polished samples were etched with a 2% nitric acid solution (nital) for 30s. In some samples,
an irregular etching was observed, with higher intensity in the areas near the edges. This can be
seen in figure 3.5 as a difference in reflectivity, where more opaque regions correspond to a higher
etching intensity. The implications of this phenomenon will be discussed in the following chapter.

(a) Sample H687 (b) Sample M810
Figure 3.5: Irregular etching intensity. More etching is observed near the edges of the sample,
especially close to the top and bottom surfaces of the plate (top and bottom of the images).

3.3 Image acquisition and processing

As explained before, due to the nature of the rolling process, it is expected to find a microstructural
gradient across the plate thickness. To find out whether these differences could be detected and
quantified by the model, the regions of interest (ROI) chosen were near the surface (S), at a quarter
thickness (Q) and at half the plate thickness (H). For example, as it is shown in figure 3.6 for the
sample C925, the second phase objects become bigger towards the center of the plate.
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(a) Surface (b) Quarter thickness (c) Half thickness
Figure 3.6: Microstructural gradient on different ROI. Sample C925, 200x magnification, Zeiss

Axio Imager.M2m, optimal imaging settings.

The ROIs were marked in the samples using hardness indentations, as shown in figure 3.7.
These easy to identify indentations were used to position the different microscopes at the same
place, in order to compare the results from the different image sources.

(a) Schema (b) Sample 1317
Figure 3.7: ROI determination. Indentations are shown as black rhombuses and the ROI as red

rectangles (not to scale). S = surface, Q = quarter thickness, M = half thickness.

By including images from different microscopes into the training data, the variance from differ-
ent cameras, optical and illumination systems was also introduced to the models. The 4 different
microscopes used characteristics are shown in table 3.3, and image examples in figure 3.8.

Table 3.3: Utilized microscopes characteristics.

Microscope Light source Camera Image resolution

Nikon Eclipse L200 100 W halogen lamp Jenoptik ProgRes CT3 2048 x 1536 px
Reichert Jung Polyvar MET 100 W halogen lamp Jenoptik ProgRes CT3 2048 x 1536 px
Zeiss Axio imager.M2m 100 W halogen lamp Jenoptik Gryphax 2000 x 1500 px

Zeiss Axio imager.Z2m 100 W halogen lamp Zeiss AxioCam HRc 1388 x 1040 px
4164 x 3120 px1

1Scanned color mode
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(a) Nikon Eclipse L200 (b) Reichert-Jung Polyvar MET

(c) Zeiss Axio Imager.M2m (d) Zeiss Axio Imager.Z2m
Figure 3.8: Different microscopes image comparison. Sample E528, 200x magnification, optimal

imaging settings.

One of the key aspects of the project is the robustness of the model. This means that the
model should be able to handle not only perfect micrographs, but also those taken in suboptimal
conditions. On an industrial scale, this variance is inevitable because of the high volume of samples
produced and analyzed. To train and test this, images were taken using optimal settings as well
as nonoptimal. The best conditions images were taken keeping the acquisition settings (exposure
time, white balance, light intensity, aperture, gamma correction and gain) constant for each sample
and microscope. Additionally, a variety of nonoptimal micrographs were taken under different
conditions including variations in aperture, exposure time, focus mode, resolution, and etching
intensity. Some examples are shown in figures 3.9 and 3.10. These additional pictures aim to
increase the robustness of the models, improving their generalization capabilities.
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(a) Multi focus (b) Single focus

(c) Short exposure time (d) Low aperture
Figure 3.9: Different acquisition conditions comparison. Sample E528, 200x magnification, Zeiss

Axio Imager.Z2m.

(a) Surface (b) Quarter thickness (c) Half thickness
Figure 3.10: Different etching intensities comparison. Sample M810, 500x magnification, Zeiss

Axio Imager.M2m.
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Another desirable feature of the model is scale invariance. In other words, images at different
magnifications of the same microstructure should be successfully segmented. To achieve this, im-
ages at 200x, 500x and 1000x magnifications were employed (see figure 3.11). Lower magnifications
were not used as they did not reveal the microstructural features and further magnification was
not considered as it would not capture more details due to the limit of resolution of the LOM.

(a) 200x (b) 500x (c) 1000x
Figure 3.11: Different magnification comparison. Sample 1453, Zeiss Axio Imager.M2m., optimal

imaging settings

Complimentary SEM micrographs were taken with a Zeiss Supra 55 microscope with the In-Lens
secondary electrons detector. As shown in figure 3.12, the increased resolving power of the SEM
allows a better identification of the substructures within the constituents, and this information is
considered to assign the classes to the pixels in the images used for training (ground truth).

(a) LOM, 200x magnification. Sample
E528

(b) SEM InLens, 2000x magnification.
Sample E528

(c) LOM, 500x magnification. Sample
M810

(d) SEM InLens, 5000x magnification.
Sample M810

Figure 3.12: Different constituents in LOM and SEM. Sample E528 ((a) and (b)) shows a
ferritic-pearlitic microstructure while the sample M810 ((c) and (d)) is bainitic.

The constituents were identified by comparing the appearance of the microstructure with the
expected morphology found in literature as well as based on the guidance provided by specialists.
The schematic representation of the microstructures shown in figure 3.12 found in bibliography are
shown in figure 3.13
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(a) Pearlite [66] (b) Granular bainite [7]
Figure 3.13: Schematic representation of steel microstructural constituents.

The images were cropped into squares for analysis. In the first generation models, a shading
correction through the rolling ball background subtraction algorithm [67] was performed. The
name of the algorithm comes from its working principle. As shown in figure 3.14, a sphere is
used to estimate the background, defined by the minimum intensity encountered by the ball at
every pixel. As shown in figure 3.15, this step aims to eliminate the shadings resulting from the
illumination system, reducing the feature variance and consequently, the number of images required
for training.

Figure 3.14: Rolling ball algorithm working principle (1D adaptation) [68].
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(a) Optimal imaging settings. Before
shading correction

(b) Optimal imaging settings. After
shading correction

(c) Short exposure time. Before shading
correction

(d) Short exposure time. After shading
correction

Figure 3.15: Shading correction effect. The difference between the optimal and the dark images is
smaller after shading correction. Sample C925, 500x magnification, Zeiss Axio Imager.Z2m.

In the second and third generation models, a threshold was applied to the matrix prediction.
This threshold function (in contrast with threshold segmentation introduced before) works on the
probability maps that the models produce as output. In this context, a threshold was applied to the
matrix probability, so that if the probability of a given pixel of corresponding to the matrix class
is higher than the threshold, it will be classified as matrix regardless of the existence of another
class with higher probability. This process is shown in figure 3.16.
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(a) Input image (b) Probability map (c) Threshold=0.08 (d) Threshold=0.8
Figure 3.16: Threshold function process. Sample E528, 200x magnification (zoomed).

Data augmentation was introduced to produce more data instances aiming to improve the
robustness of the model and reduce the amount of annotation needed. An overview of some of the
transformations is shown in figure 3.17.

(a) Original input image (b) Augmented patch (c) Augmented patch

(d) Augmented patch (e) Augmented patch (f) Augmented patch
Figure 3.17: Training input image and augmented patches. Sample H687, 200x magnification,

Zeiss Axio Imager.M2m

3.4 Iterative model optimization

An overview of the workflow of the project is shown in figure 3.18. As explained before, an
iterative approach was employed. This resulted in three generations of models, that were tested
using images from industrial grade steel samples. The best results from each generation were used
as training data for the next generation. This minimized the necessity for hand annotation, a very
time-consuming step in the model development. However, in some cases, manual corrections to
the model generated masks were performed. Finally, the results from the last model were used
to perform a quantitative microstructural analysis and to establish hardness correlations with the
model output.
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Figure 3.18: Workflow overview.

The deep learning segmentation models trained use the U-NET architecture with DenseNet-201
encoder as backbone. Due to the previously discussed limitations of the LOM, it is not possible
to reliably distinguish bainite from martensite, therefore it was decided to concatenate these two
constituents in one class. Moreover, one sample may have both bainitic and martensitic objects
in different positions across the sample thickness, making it even more complex to classify them
separately when assigning the ground truth for model training.

Four first-generation models were trained using images from the Dillinger Hütte database.
Their characteristics are shown in the table 3.4. Testing of the performance of the models was
done using pictures from the samples E528, H687 and M810. The effect of the image input size
was also analyzed. The best performing model, model 4, will be used for comparison with the next
generation models.

Table 3.4: Summary of the first generation models.

Model Number of
training images

Training input size Validation IoU Shading correction

1 515 256 x 256 px 0.9211 No

2 515 512 x 512 px 0.9133 No

3 515 256 x 256 px 0.9193 Yes

4 515 512 x 512 px 0.9109 Yes

The data collected during the tests was used to adjust the training parameters for the next gen-
eration models. The best segmentation results, including images taken under the aforementioned
conditions, were used as input masks for training. The second-generation models are shown in the
table 3.5.

Table 3.5: Summary of the second generation models

Model Number of
training images

Training input size Validation IoU Shading correction

5 629 1024 x 1024 px 0.7840 No

6 629 768 x 768 px 0.8839 No
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The second-generation models were tested with unseen images from the samples E528, H687
and M810. The image input size was fixed to the closest multiple of 128 px and the shading
correction was eliminated. The best performing model of the generation, model 6, will be further
used for comparison with other generations models.

The best segmentation results were one more time used to train the third-generation models.
In some cases, the masks were manually corrected using GIMP software [69]. A summary of the
third-generation models can be seen in the table 3.6.

Table 3.6: Summary of the third generation models.

Model Number of
training images

Training input size Validation IoU Shading correction

7 760 768 x 768 px 0.8490 No

8 760 768 x 768 px 0.8917 No

These models were tested using images from the unseen samples 1311, 1317, 1449, 1453, B250
and C925. The best performing model, model 8, will be used for comparison as well as for quan-
titative microstructural analysis.

3.5 Quantitative microstructural analysis

For each sample, images from one microscope and one magnification were chosen to perform the
quantitative microstructural analysis. 4 images were utilized for every ROI. The threshold to the
prediction was manually selected to optimize the results, aiming to find a balance between regions
where the segmented second phase object edges cover parts of the matrix, and areas where the
opposite happens. Moreover, with higher threshold values an increased number of particles are
detected. This can both improve the segmentation quality or introduce artefacts. It is important
to note that since the threshold operates on the matrix prediction, it does not interfere with
the second-phase classification. This means that, for example, if a pixel is classified as pearlite
before thresholding, it may be reclassified as matrix afterwards, but never as bainite/martensite.
A summary of the image selection and the threshold values can be seen in the table 3.7.

Table 3.7: Acquisition and processing parameters for quantitative microstructural analysis.

Sample Microscope Magnification Threshold

1311 Zeiss axio imager.M2m 500x 0.4

1317 Zeiss axio imager.M2m 500x 0.3

1449 Zeiss axio imager.M2m 200x 0.12

1453 Zeiss axio imager.M2m 200x 0.12

B250 Zeiss axio imager.M2m 200x 0.35

C925 Zeiss axio imager.M2m 200x 0.35

3.5.1 Morphological parameters calculation

Different morphological parameters were calculated from the segmentation mask, using the region
properties algorithms from the Scikit-image library [70]. For each microscope, a pixel to µm
conversion factor was computed. The object shown in figure 3.19 will be used as demonstration of
the calculation.
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(a) LOM (b) Segmentation mask
Figure 3.19: Sample pearlitic object. Sample C925.

The selected parameters are:

• Area: Three area-related parameters were calculated, as shown in figure 3.20. The area of
the region, given by the number of pixels, the filled area, which is the area of the region with
all the holes filled in and the convex area, which is the area of the smallest convex polygon
that encloses the region.

(a) Area (b) Filled area (c) Convex area
Figure 3.20: Different area-related parameters calculation (white areas).

• Perimeter: The perimeter of the object approximates the contour as a line through the centers
of border pixels using a 4-connectivity. As shown in figure 3.21, this was computed both for
the region and the convex hull.

(a) Perimeter (b) Convex perimeter
Figure 3.21: Different perimeter-related parameters calculation (red lines).

• Equivalent diameter: the diameter of a circle with the same area as the region.
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Equivalent diameter =

√
4 · Area

π
(3.1)

Figure 3.22: Equivalent diameter calculation (red line).

• Maximum feret diameter: the maximum Feret’s diameter is computed as the longest distance
between points around the region’s convex hull contour.

Figure 3.23: Maximum feret diameter calculation (red line).

• Axial ratio: the length of the major and minor axis of the ellipse that has the same normalized
second central moments as the region were used to determine the axial ratio, as shown in
equation 3.2.

Axial ratio =
Major axis length
Minor axis length

(3.2)

Figure 3.24: Axial ratio calculation. Blue: major axis, red: minor axis, green: ellipse.

• Orientation: defined as the angle between the horizontal and the major axis of the ellipse that
has the same second moments as the region, ranging from -pi/2 to pi/2 counter-clockwise.
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Figure 3.25: Orientation calculation. Blue: major axis, green: ellipse.

• Eccentricity: eccentricity of the ellipse that has the same second moments as the region. The
eccentricity is the ratio of the focal distance (distance between focal points) over the major
axis length. When it is 0, the ellipse becomes a circle.

Eccentricity =
focal length

minor axis length
=

√
1−

(
minor axis length
major axis length

)2

(3.3)

• Solidity: Ratio of pixels in the region to pixels of the convex hull.

Solidity =
Area

Convex area
(3.4)

The calculations were made twice, one considering all the objects in the image and one with
clear borders, that means, that only the objects that were completely in the picture were computed.

3.5.2 Hardness testing

Hardness measurements were carried out to correlate with the quantitative results from the model
prediction. 10 Vickers hardness tests were conducted on the specimens in each of the three regions
of interest (S, Q and H). The test is carried out by pressing a pyramidal diamond indenter to
the sample surface with a given load, according to the ASTM E92-17 standard [71]. Among the
possible loads stipulated, 5 kgf was chosen to ensure an indentation size large enough to cover
both constituents, attempting to minimize variance. The hardness was calculated according to the
equation 3.5, where d is the average diagonal diameter of the indentation in millimeters, F the load
in kgf and HV the resulting Vickers hardness. These results were used as a measure of mechanical
properties to correlate the quantitative analysis from the best model results.

HV = 1.8544 · F
d2

(3.5)
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Chapter 4

Report and discussion of results

4.1 Iterative model optimization

The first-generation models had a satisfactory performance on good quality pictures. It was ob-
served that as the testing input size increased, the results improved. However, once the original
resolution of the image was reached, any further increase produced only minor differences, as it
can be seen in the figure 4.1. This behaviour is related to the limitations of the scale invariance of
the model. For very low testing input size, the size of the features in pixels is too big compared
with the sizes used for training. Based on these observations, for the second generation models the
script was modified to automatically adjust the input size to the closest multiple of 128 pixels from
the original image resolution, aiming to improve efficiency, as the running time and the storage
needed increased with larger input sizes.

Regarding the training input size, the best performing models were the ones with bigger training
input size. However, this variable cannot be arbitrarily increased for two main reasons: first, the
computational power needed increases with the training input size. Second, a larger input size
translates into fewer patches produced from each image, and with limited training data, this can
negatively affect the performance of the model. Therefore, an equilibrium training input size must
be found to achieve the best performance.
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(a) Input image (b) 2048 x 2048 px (c) 1536 x 1536 px

(d) 1024 x 1024 px (e) 512 x 512 px (f) 256 x 256 px
Figure 4.1: Input size effect on the segmentation. Sample 6974, 200x magnification, Zeiss Axio

Imager.M2m, shading correction, optimal imaging settings.

The limitations of the model were mostly related to edge detection and small particles recogni-
tion, as it can be seen in the figure 4.2. The consistency of the segmentation was also not optimal,
as it can be seen on the results for the different microscopes tested in the figure 4.3.
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(a) Input image (b) Segmentation

(c) Input image zoom (d) Segmentation zoom
Figure 4.2: First generation segmentation results. Sample E528, 500x magnification, Nikon

Eclipse L200, optimal imaging settings, 1536 x 1536 px input size.
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(a) Nikon Eclipse L200 (b) Reichert-Jung Polyvar MET

(c) Zeiss Axio Imager.M2m (d) Zeiss Axio Imager.Z2m
Figure 4.3: First generation segmentation results. Sample C925, 500x magnification, 1536 x 1536

px input size.
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Nonetheless the best segmentation results were used as masks to train the second-generation
models. It was experimentally observed that even if the masks were not perfectly accurate, the
benefit from a greater variance in the training dataset overcomes the error introduced by the miss-
segmented pixels. Some examples of the images used, and the corresponding masks can be seen in
the figures 4.4 and 4.5.

(a) Input image (b) Segmentation (c) Generated mask
Figure 4.4: Under etched image mask generation. Sample E528, 200x magnification, Zeiss Axio

Imager.M2m.

(a) Input image (b) Segmentation overlay (c) Generated mask
Figure 4.5: Low aperture image mask generation. Sample H687, 200x magnification, Zeiss Axio

Imager.Z2m.

To train the second-generation models, bigger training input size images were used, as it was
seen in the first generation that the models trained with patches of 512 x 512 px performed better
than the ones with 256 x 256 px. This increase was effective due to the addition of more training
data and more intense data augmentation, that allowed to achieve enough training patches to reach
a good performance.

For the second-generation models, a threshold function was implemented to improve the second
phase object edge detection, as it is shown in figure 4.6. Before, the pixels were assigned to the
class with the highest probability. In the new version, the pixels assigned to the matrix class are
defined by applying a threshold to the probability maps that the models produce as output. For
example, if a threshold of 0.1 is set, every pixel with a probability higher than 10% of corresponding
to the matrix class, will be assigned to this class, regardless of the existence of another class with
higher probability. By doing so, the edges of the objects, where the classification was problematic,
could be better adjusted.
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(a) Threshold = 0.008 (b) Threshold = 0.08 (c) Threshold = 0.8

(d) Threshold = 0.008 zoom (e) Threshold = 0.08 zoom (f) Threshold = 0.8 zoom
Figure 4.6: Threshold function effect on the model prediction. Sample E528, 200x magnification,

Zeiss Axio Imager.Z2m.

Another problem with the segmentation in the first-generation models was the uneven illumi-
nation in the edges of the pictures. The figure 4.7 shows that the shading intensity is higher on the
sides of the image. Considering this and that the models work with square pictures, it was decided
to crop the images to be segmented in the middle instead of the side. The initial strategy was
also to mitigate this problem through shading correction pre-processing. However, this process is
computationally costly, even more than the segmentation itself. Moreover, the improvement of the
results was not consistent and the adequate radius for background subtraction had to be manually
selected and was dependent on the image resolution and the second phase object size. Therefore,
it was not convenient, and it was decided to eliminate this step and aim to improve the robustness
of the models by training them with a broader range of images without shading correction.

(a) Input image (b) Shading estimated with rolling ball
algorithm

Figure 4.7: illumination distribution. Sample E528, 500x magnification, Nikon Eclipse L200.

50



As a result of the higher variance of the images used to train the second-generation models,
their robustness improved. The second-generation models performed better than their predecessors.
However, weak contrast and dark images still proved to be difficult to segment, as it is shown in
the figures 4.8 and 4.9. To target this problem, hand corrected masks of images taken under these
conditions were used to train the third-generation models. The same approach was used to improve
the recognition of small particles. Two examples of the hand corrected masks are shown in the
figure 4.10.

In this generation, the model with the smallest training input size showed a better performance.
This could be a consequence of computational power limitations. To use 1024 x 1024 px patches
during training, the batch size had to be reduced. As a consequence, it was probably too small to
be representative of the entire data set and led to an inefficient update of the weights. Another
possible reason for this can be the smaller number of patches that conformed the data set due to
the higher resolution, as explained before.

(a) Input image (b) Segmentation
Figure 4.8: Model 6 performance in short exposure time image. Sample 1453, 500x magnification,

Nikon Eclipse L200, 1536 x 1536 px input size.

(a) Input image (b) Segmentation
Figure 4.9: Model 6 performance in weak contrast image. Sample 1453, 500x magnification,

Reichert-Jung Polyvar MET, 1536 x 1536 px input size.
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(a) Input image (b) hand corrected mask

(c) Input image (d) Hand corrected mask
Figure 4.10: Not optimal images and hand corrected masks for third generation model training.

Top: sample E528, 500x magnification, Nikon Eclipse L200, under etched. Bottom: Sample
H687, 500x magnification, Zeiss Axio Imager.Z2m, short exposure time.

With the addition of these images to the training data set, the performance achieved by the
third-generation models is superior to its predecessors. Both models were trained with an input size
of 768 x 768 px, as this produced the best results in the previous generation. The main difference
between the two models is the data augmentation parameters. As explained in the second chapter,
data augmentation techniques make it feasible to train convolutional neural networks with fewer
images. However, the transformations chosen, and their intensity must be carefully selected so that
there is a wider representation of the classes without altering their identity features. For example,
basic transformations such as crop, flip, and rotate contribute to the robustness of the model in
relationship with scale invariance and sensitivity to image orientation. At the same time, color and
contrast modifications aim to target the differences in acquisition conditions and etching intensity
but must be controlled to avoid overlapping the features from the different classes, which would
result in lower performance.

A comparison of the segmentation results from each generation can be seen in the figures
4.11 and 4.12. It is important to emphasize that these samples were not part of the training
dataset, ensuring an unbiased evaluation of the generalization capability from the models. The
misclassification of the pearlitic second phase decreased in every generation. The change from the
first generation (4.11 (a)) to the second (4.11 (b)) was not as big but the elimination of the shading
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correction reduces the running time, improving efficiency. For the bainitic sample the holes inside
the second phase were gradually smaller at every iteration. Nonetheless, they are not completely
closed in the final model.

(a) Model 4 (b) Model 6 (c) Model 8
Figure 4.11: Segmentation results from the different models on the same input image. Sample

C925, 200x magnification, Zeiss Axio Imager.M2m, optimal imaging settings.

(a) Model 4 (b) Model 6 (c) Model 8
Figure 4.12: Segmentation results from the different models on the same input image. Sample

1453, 500x magnification, Zeiss Axio Imager.Z2m, low aperture.

The last model performs consistently good, as it can be seen in the figures 4.13 and 4.14. The
segmentation is accurate in almost every condition tested. The exception is the 1000x magni-
fication. One possible explanation for this is that the training data set did not include 1000x
magnification images, and the model was not able to generalize the features from the other magni-
fications to this range. Furthermore, the sharpness of the micrographs taken at this magnification
was never as good as with the other lenses, probably because of the smaller working distance and
increased optical aberration. One possible way to improve the performance at 1000x would be to
include it within the training data. However, the regions captured are too small to be statistically
representative of the microstructure. Therefore, it was not included.

There are no misclassifications for the bainitic sample (1453). For the pearlitic sample, the algo-
rithm falsely detected a 0.1% of bainite and martensite in the picture from Zeiss Axio Imager.M2m
200x, 0.3% in the short exposure time image and 13,6% in the 1000x.
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(a) Nikon Eclipse
L200, 200x, normal

conditions

(b) Reichert-Jung
Polyvar MET, 200x,
normal conditions

(c) Zeiss Axio
Imager.Z2m, 200x,
normal conditions

(d) Zeiss Axio
Imager.M2m, 200x,
normal conditions

(e) Zeiss Axio
Imager.M2m, 200x,
short exposure time

(f) Zeiss Axio
Imager.M2m, 200x,

low aperture

(g) Zeiss Axio
Imager.M2m, 500x,
normal conditions

(h) Zeiss Axio
Imager.M2m, 1000x,
normal conditions

Figure 4.13: Segmentation results in different conditions for the same ROI. Sample C925.

(a) Nikon Eclipse
L200, 200x, normal

conditions

(b) Reichert-Jung
Polyvar MET, 200x,
normal conditions

(c) Zeiss Axio
Imager.Z2m, 200x,
normal conditions

(d) Zeiss Axio
Imager.M2m, 200x,
normal conditions

(e) Zeiss Axio
Imager.M2m, 200x,
short exposure time

(f) Zeiss Axio
Imager.M2m, 200x,

low aperture

(g) Zeiss Axio
Imager.M2m, 500x,
normal conditions

(h) Zeiss Axio
Imager.M2m, 1000x,
normal conditions

Figure 4.14: Segmentation results in different conditions for the same ROI. Sample 1453.
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The performance of the model is better at lower magnification, where it shows the highest
consistency. Moreover, the defects at 500x are mostly related to big objects, which take up a
considerable fraction of the image. For example, matrix holes inside the bainitic objects can be
seen in figure 4.15. This is probably related to a limit in the scale invariance of the model. Even
when the neural networks operate as a black box in which it is not possible to assure which features
lead to the final pixel classification, the consideration of the context (surrounding pixels) is the
elemental block of the convolution. Keeping this in mind, it is possible that the model associates
large uniform areas with matrix class, leading to misclassification of exceptionally big objects at
500x and most objects at 1000x.

(a) Input image (b) Segmentation results
Figure 4.15: Segmentation results. Sample 1453, 500x magnification, Zeiss Axio Imager.M2m,

optimal imaging settings.

In most cases, the estimated second phase fraction is higher at lower magnification. This could
be related to the capability of the model to distinguish close objects from the matrix. At 200x,
matrix regions in between objects are sometimes classified as second phase, as it can be seen in
the figure 4.16.

(a) 200x magnification (zoomed) (b) 500x magnification (zoomed)
Figure 4.16: Segmentation results. Sample C925, Zeiss Axio Imager.M2m, optimal imaging

settings.

Nonetheless, the segmentation results in two different magnifications, for different microstruc-
tures, microscopes, and acquisition conditions are very consistent, as it can be seen in the figure
4.17 and 4.18. Moreover, part of this variation can be attributed to the difference in the field of
view from the camera-optical system of the different microscopes used.
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Figure 4.17: Pearlite fraction in different acquisition conditions images. Sample C925. The
letters correspond to the images shown in the figure 4.13.
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Figure 4.18: Bainite / martensite fraction in different acquisition conditions images. Sample
1453. The letters correspond to the images shown in the figure 4.14.

Although the performance of the last model is good, there are some cases where the results
are not optimal. For example, in the figure 4.19, the misclassifications are mostly concentrated in
objects that are not as dark as the typical pearlitic object. And the lamellas cannot be seen in
any of the cases. It is possible that these errors may be due to the absence of objects with those
characteristics in the training data, and that the model’s generalization capability is not sufficient
to recognize them. It can also be seen that the model considers the surroundings of the object for
the classifications. As a result, if one object is classified as bainite, it is much more likely for the
objects around it to also be misclassified as bainite. Examples of this can be seen in figure 4.20. In
the case of 4.20 (b) the light appearance of the center of the second phase objects and its weaker
contrast with the surrounding leads to the recognition as bainitic of the adjacent objects. In 4.20
(d), instead, the central object is recognized as bainite as well as the surroundings. These results

56



can be explained by considering how CNNs function: as the information flows through the layers,
the down sampling of the feature maps helps to detect features on a bigger scale, as the filters
cover a bigger fraction of the original image. However, this may also lead to the loss of the details
of the location of the object [72]. U-NET specifically targets this problem by introducing the skip
connections that concatenate the early feature maps with the later ones. However, as can be seen
from these results, a negative influence from the context is still observed in some cases.

(a) Input image (b) Segmentation
Figure 4.19: Model 8 performance. Sample B250, 200x magnification, Zeiss Axio Imager.M2m,

1536 x 1536 px input size.
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(a) Input image (b) Segmentation results

(c) Input image (d) Segmentation results
Figure 4.20: Segmentation results. Sample B250, 200x magnification (zoomed), Zeiss Axio
Imager.M2m, optimal imaging settings. Green circles indicate atypical object and area of

influence.

The use of high-resolution images as input also proved to give worse segmentation results than
the lower resolution images. This can be attributed to the size of the features in pixels, which is
very different as the resolution is higher. Another possible reason for this is that the camera uses
a scanning color mode [73] to produce higher resolution images. This technology takes multiple
pictures moving one pixel at a time allowing to capture RGB information for every pixel, leading
to a higher resolution. However, this method is also very susceptible to displacements of the set-up
during the micro scanning. The different acquisition process can affect the final intensity value
of the pixels. Some examples of this can be seen in the figure 4.21. Moreover, using the high
resolution mode results in pixel sizes smaller than the LOM resolving power, as it can be observed
in the table 4.1. Then, it can be concluded that it does not add more detail to the picture to go
beyond that point.
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Table 4.1: Pixel size for Zeiss Axio Imager.Z2m microscope with Zeiss AxioCam HRc camera in
different acquisition modes.

Resolution
Pixel size (µm)

200x magnification 500x magnification

Standard
(1388 x 1040 px)

0.33 0.13

High
(4164 x 3120 px)

0.11 0.04

(a) 200x magnification. (b) 500x magnification.
Figure 4.21: Misclassifications in high resolution images from the Zeiss Axio Imager.Z2m. Sample

C925.

1000x magnification images were also not correctly segmented, as it can be seen on the figure
4.22. As explained before, this might be related to the absence of instances of this magnification
in the data set or to the lower quality of the images taken with these lenses.
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(a) Input. (b) Segmentation.
Figure 4.22: Misclassifications in 1000x images. Sample 1453, Nikon Eclipse L200.

Lastly, in some cases of sub optimal images, such as the one shown in the figure 4.23, the
model was not able to detect the second phase accordingly. However, given the bad quality of
the micrograph, it is possible that the features of the second phase objects necessary for the
segmentation are not reflected in the image.

(a) Input image (b) Segmentation
Figure 4.23: Misclassifications in bad images. Sample 1453, 500x magnification, Reichert-Jung

Polyvar MET, short exposure time and under etched.

Based on these observations it is possible to conclude that the final model was able to suc-
cessfully segment light optical micrographs from different microscopes and acquisition conditions
consistently. Compared with the previous generations, a better detection of the second phase ob-
jects as well as less variation related to the image acquisition conditions has been observed. The
cases where the performance is not as good as expected could be related to the lack of images
taken under those conditions in the training data set, which shows the limit in the generalization
capability of the model. Given the observed trend, it is possible that the incorporation of the
last results as masks to the training data could lead to further improvement of the model in a
subsequent generation.
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4.2 Quantitative microstructural analysis

4.2.1 Second phase fraction

The second phase fractions for every sample, calculated from the segmentation results can be
seen on the figure 4.24. The comparison between microscopes shows that the results were more
consistent for the microstructures with bigger second phase objects (1449, 1453, B250 and C925), as
there is less difference between microscopes and a lower standard deviation for each one. However,
part of the deviation is a consequence of the inherent different second phase content on every
picture, as well as from the second phase fraction difference between the different positions across
the samples thickness. As explained before, the thicker the sample and the faster the cooling rate,
the bigger the temperature gradient across the sample thickness during cooling. This difference is
a consequence of the heat transfer process and leads to differences in the microstructure across the
different positions of the sample. The figure 4.25 displays the same results but only for the quarter
thickness region and 200x magnification and the deviation is lower for most of the samples. In the
case of the samples 1311 and 1317, 200x magnification is not enough to resolve the microstructure,
thus resulting in bigger variations, as shown in figure 4.26. In all cases, only images taken under
optimal acquisition conditions were considered (four images for each ROI and microscope).

1311 1317 1449 1453 B250 C925
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Figure 4.24: Second phase fraction and standard deviation calculated from the selected
segmented images for every sample and microscope.
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Figure 4.25: Second phase fraction and standard deviation calculated from the selected
segmented images for every sample and microscope. 200x magnification, quarter thickness.

(a) Input image (b) Segmentation results
Figure 4.26: Segmentation results in complex fine microstructure. Sample 1311, 200x

magnification, Zeiss Axio Imager.M2m, optimal imaging settings.

The same trend can be observed when analyzing the effect of the different acquisition condi-
tions, as shown in the figure 4.27. The figure 4.27 (a) shows the second phase fraction and standard
deviation calculated from images including every microscope, ROI and 200x and 500x magnifica-
tion. In this case, as the images portrait the exact same region (by averaging the results from
every microscope) so the difference in the second phase fraction between the different conditions
can only be attributed to differences in the segmentation. Nonetheless, the standard deviation
is partly attributed to the different fields of view on every lens and the microstructural gradient
across the sample thickness. A comparison between the segmentation results at 200x and 500x
magnifications for the sample 1317 can be seen in the figure 4.28. The results at 200x are not
optimal due to the limited resolution of the objects in the image.
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Figure 4.27: Acquisition conditions effect on second phase fraction.

(a) 200x (b) 500x
Figure 4.28: Segmentation results in complex fine microstructure. Sample 1317, Zeiss Axio

Imager.M2m, short exposure time.
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In order to compare with the segmentation results, the manual point counting method was
implemented, as shown in figure 4.29. A circular grid of 92 equidistant point was employed to
counter the orientation effects resulting from the rolling, and the average between 4 images was
calculated for every ROI with images from the Zeiss Axio Imager.M2m microscope, under optimal
imaging settings. The standard suggests the utilization of a grid size close to one half of the second
phase object size. However, due to the wide distribution of sizes, this was difficult to determine.
The results obtained, summarized in the table 4.2, are mostly consistent with the segmentation
results, confirming the performance of the model.

Figure 4.29: Manual point count implementation. Red dots represent the grid, blue circles
indicate intersections with edges of the second phase objects and green circles intersection with

second phase objects. Sample B250, 200x magnification, Zeiss Axio Imager.M2m, optimal
imaging settings.
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Table 4.2: Second phase fraction for every sample and position.

Sample Position Segmentation Manual Point Count

1311

S 0.33 ± 0.02 0.27 ± 0.02

Q 0.33 ± 0.01 0.32 ± 0.04

H 0.39 ± 0.00 0.40 ± 0.06

1317

S 0.40 ± 0.03 0.37 ± 0.03

Q 0.35 ± 0.03 0.38 ± 0.02

H 0.31 ± 0.01 0.29 ± 0.03

1449

S 0.21 ± 0.02 0.21 ± 0.04

Q 0.22 ± 0.01 0.24 ± 0.04

H 0.30 ± 0.01 0.32 ± 0.02

1453

S 0.19 ± 0.03 0.25 ± 0.03

Q 0.25 ± 0.01 0.28 ± 0.04

H 0.30 ± 0.03 0.32 ± 0.04

B250

S 0.19 ± 0.01 0.22 ± 0.01

Q 0.19 ± 0.02 0.24 ± 0.03

H 0.15 ± 0.01 0.21 ± 0.02

C925

S 0.27 ± 0.03 0.32 ± 0.02

Q 0.28 ± 0.02 0.30 ± 0.05

H 0.25 ± 0.02 0.29 ± 0.02

As it is shown in figure 4.30, the second phase fraction intervals from both methods overlap for
every ROI from the samples 1317, 1449, 1453 and C925. The largest discrepancy, for the sample
B250, might be a consequence of second phase objects with a weaker contrast than the average
that are sometimes undetected by the model. For this reason, the manual point count estimation
might be more accurate in this case, as it yields a higher second phase fraction.

For the sample 1311 S, the manual point count method resulted in a lower second phase fraction.
However, the complexity of the microstructure hindered the method’s implementation. Taking this
into account, it is uncertain which technique produced more accurate results for this ROI.
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Figure 4.30: Manual point count and segmentation results comparison.

4.2.2 Morphological parameters

The segmentation results can also be used to calculate morphological parameters of the particles,
where the second phase objects are analyzed individually. There are two different proposed ap-
proaches for this: with clear borders (4.31 (b)) the objects at the edges of the images are not
considered in the calculation, as they are not representative of the true size and shape of the whole
object. Alternatively, this criterion may be disregarded, and the parameters can be computed by
considering every object (4.31 (c)).

(a) Input image (b) Objects detected (clear
borders)

(c) Objects detected (no clear
borders)

Figure 4.31: Computation of second phase objects for morphological parameters calculation.
Sample C925, 200x magnification, Zeiss Axio Imager.M2m

Calculations were carried out on the same 4 selected pictures for every ROI, taken under optimal
imaging settings. Considering the limit of the resolving power from the LOM, particles smaller than
0.5 um2 were considered segmentation artefacts and therefore filtered before the calculation. One
limitation of the calculation is that objects that are adjacent to each other are segmented as one
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(see Fig 4.32), as the model is trained for semantic segmentation instead of instance segmentation.
This leads to a wider distribution, with clusters of particles counted as one resulting in higher
averages for size related parameters.

(a) Input image (b) Overlay (c) Objects detected (no clear
borders).

Figure 4.32: Computation of second phase objects for morphological parameters calculation.
Sample B250, 200x magnification, Zeiss Axio Imager.M2m (zoomed).

The wide selection of morphological parameters is an useful tool to help characterize complex
microstructures. For example, orientation and axial ratio values may influence the tensile prop-
erties in the different directions respect to rolling, and the size and distribution of the second
phase objects also affects the hardness across the sample thickness, as it will be discussed in the
next section. A complete report of the results for the sample C925 is shown in the appendix as
reference. The distribution plots of the parameters show that the area of the objects follows a
logarithmic distribution, as it is shown in figures 4.33 and 4.34. To put this data into perspective,
an individual particle of the average area, orientation, and axial ratio together with the upper limit
of the standard deviation is shown. While these results provide additional information about the
microstructure, they would be more representative of the samples if adjacent objects were consid-
ered separately. However, the development of an instance segmentation model also constitutes one
step further in the complexity of the task.

(a) Second phase object area distribution (b) Average second phase object elliptical
approximation (red) and standard deviation

range (blue)
Figure 4.33: Sample C925, 200x magnification, Zeiss Axio Imager.M2m, optimal imaging

settings, quarter thickness, no clear borders.
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(a) Second phase object area distribution (b) Average second phase object elliptical
approximation (red) and standard deviation

range (blue)
Figure 4.34: Sample 1311, 500x magnification, Zeiss Axio Imager.M2m, optimal imaging settings,

quarter thickness, no clear borders.

4.2.3 Hardness correlations

To establish hardness correlations, the second phase fractions for every position (S, Q and H) were
calculated, using the segmentation results from the Zeiss Axio imager.M2m microscope and the
magnification that better suited the microstructure. For the samples 1311 and 1317, with a finer
microstructure, 500x was used, whereas for 1449, 1453, C925 and B250, 200x magnification was
preferred. It is important to note that for the pearlitic samples there were some misclassifications
(pearlitic objects were recognized by the model as bainitic). However, the amount of second phase
is accurate, calculated as one minus the matrix fraction, as shown by the comparison with the
manual point count method.

Hardness tests were carried out using a 5 kgf force, to ensure an indentation size enough to
cover both constituents, trying to minimize variance. The smallest indentation, in the sample
1317 had a diagonal of approximately 190 µm, which translates into a superficial indentation area
bigger than 18 000 µm2, more than one order of magnitude bigger than the highest average for
the second phase object area across all the ROIs, which was 368 µm2 measured in the sample
B250. However, hardness calculations show a noticeable variance that can be partly attributed to
the 3% uncertainty reported by the manufacturer of the testing machine as well as to the intrinsic
variation of the microstructure from point to point.

The table 4.3 summarizes the results, including the area calculation as selected morphological
parameter.
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Table 4.3: Second phase fraction and object area for every sample and ROI.

Sample Position Hardness Second phase fraction Area

1311

S 232 ± 4 0.33 ± 0.02 31 ± 68

Q 230 ± 4 0.33 ± 0.01 30 ± 58

H 241 ± 4 0.39 ± 0.00 45 ± 161

1317

S 244 ± 3 0.40 ± 0.03 70 ± 252

Q 230 ± 3 0.35 ± 0.03 43 ± 114

H 219 ± 3 0.31 ± 0.01 45 ± 118

1449

S 207 ± 5 0.21 ± 0.02 104 ± 281

Q 201 ± 3 0.22 ± 0.01 131 ± 351

H 199 ± 5 0.30 ± 0.01 252 ± 907

1453

S 204 ± 7 0.19 ± 0.03 81 ± 177

Q 210 ± 7 0.25 ± 0.01 157 ± 364

H 210 ± 5 0.30 ± 0.03 285 ± 1328

B250

S 150 ± 2 0.19 ± 0.01 192 ± 399

Q 150 ± 6 0.19 ± 0.02 368 ± 874

H 145 ± 6 0.15 ± 0.01 304 ± 748

C925

S 151 ± 4 0.27 ± 0.03 100 ± 555

Q 146 ± 2 0.28 ± 0.02 167 ± 873

H 138 ± 4 0.25 ± 0.02 111 ± 688

Looking at the appearance of the microstructure from the sample B250, shown in figure 4.35,
the second phase objects are smaller near the surface, with similar sizes in the quarter and half
thickness. In this case, the mean second phase object area does not show a correlation with the
hardness values, as shown in figure 4.36. The surface and quarter position have almost the same
second phase fraction and hardness, but the lowest and highest object area, respectively. The
second phase fraction, on the other hand, shows a linear correlation with the hardness values. The
thickness of the plate (120 mm) and the similarity between the quarter and the center suggests
that the cooling was slow, leading to a uniform second phase precipitation across the thickness,
with the region close to the surface being the main difference.

Another observed characteristic from this sample is the smaller grain size near the surface.
This is probably a consequence of the rolling process, where the surface experiences more plastic
deformation, leading to an increased driving force for recrystallization and smaller grain size [74].
However, the current model is not able to segment grain boundaries to quantify this effect. For
this reason, grain boundary segmentation can help to achieve a more integral understanding of the
microstructure.
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(a) Surface (b) Quarter thickness (c) Half thickness
Figure 4.35: Microstructural gradient. Sample B250, 200x magnification, Zeiss Axio

Imager.M2m, optimal imaging settings.
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Figure 4.36: Hardness correlations with segmentation results. Sample B250.

For the sample C925 the highest hardness value is close to the surface, with the smallest
objects. In this case, the limitations of the semantic segmentation translate in a higher average
8and deviation for the object size in the quarter position. As shown in the figures 4.37 and 4.38, the
big clusters of pearlite are segmented as one object, resulting in a bias in the estimation towards
bigger sizes. As it happened in the other pearlitic sample, B250, no apparent correlation between
the second phase object area and the hardness can be established (see figure 4.39). Regarding the
second phase fraction, a positive correlation can be seen, with a higher second phase fraction leading
to higher hardness measurements. This observation confirms the assumption found in literature
[75], [76]. The difference in second phase fraction between the surface and the quarter is small,
which might suggest that the difference in hardness is a consequence of a faster cooling rate close
to the surface, that leads to a smaller interlamellar spacing and a harder pearlite. This hypothesis
could be evaluated by taking SEM images from the sample. Nonetheless, this is outside the scope
of the current work. Moreover, smaller objects are a more effective barrier against dislocation
movement, resulting in a higher hardness.
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(a) Surface (b) Quarter thickness (c) Half thickness
Figure 4.37: Microstructural gradient. Sample C925, 200x magnification, Zeiss Axio

Imager.M2m, optimal imaging settings.

(a) Surface (b) Quarter thickness (c) Half thickness
Figure 4.38: Detected second phase objects. Sample C925, 200x magnification, Zeiss Axio

Imager.M2m, optimal imaging settings.
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Figure 4.39: Hardness correlations with segmentation results. Sample C925.

The sample 1317 follows the expected trend, showing a linear relationship between the second
phase fraction and the hardness, as shown in figure 4.42. The darker etching response in the surface
(see figure 4.40) might indicate the presence of martensite, with a microstructural gradient leading
to bainite in the core of the plate. This is also backed up by the higher hardness in the surface.
The second phase object area measurements reflect the nature of the microstructure, with more
interwoven second phase objects in the quarter-thickness position, and more separated from the
ferritic background in the center of the plate. The difference with the surface, with the highest
average and deviation, is also visible in the detected objects plot, shown in figure 4.41.

(a) Surface (b) Quarter thickness (c) Half thickness
Figure 4.40: Microstructural gradient. Sample 1317, 500x magnification, Zeiss Axio Imager.M2m,

optimal imaging settings.
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(a) Surface (b) Quarter thickness (c) Half thickness
Figure 4.41: Detected second phase objects. Sample 1317, 500x magnification, Zeiss Axio

Imager.M2m, optimal imaging settings.
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Figure 4.42: Hardness correlations with segmentation results. Sample 1317.

Sample 1311 contains the most complex microstructure from the set. The darker etching
response close to the surface as well as the more defined boundaries between the second phase
objects and the matrix might be indicators of a ferritic-martensitic microstructure in this region
(see figure 4.43). Towards the center of the plate, the microstructure turns more complex, with
highly interwoven second phase objects.

The correlations between both the mean area and the second phase fraction fit perfectly with
the hardness measurements, as shown in figure 4.44. However, these results do not correlate with
the expected gradient across the thickness, as the surface shows properties in between the quarter
and the center values. Given the similarity in area and second phase fraction values between the
surface and the quarter, the difference in hardness might be explained by a difference in the second
phase constituent, backing up the idea of a martensitic surface.

The highest hardness measured in the half of the plate might be a consequence of the centerline
segregation effect, with the partition of the alloying elements leading to a more complex and harder
microstructure. This results in a higher second phase fraction as well as in a higher deviation of
the area of the particles.
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(a) Surface (b) Quarter thickness (c) Half thickness
Figure 4.43: Microstructural gradient. Sample 1311, 500x magnification, Zeiss Axio Imager.M2m,

optimal imaging settings.
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Figure 4.44: Hardness correlations with segmentation results. Sample 1311.

The images from the sample 1449, in figure 4.45, show a different etching response at the
surface and bigger second phase objects towards the core of the plate. These could be indicators of
a microstructural gradient, with martensitic second phase at the surface and bainite in the center.
This is backed up by the hardness measurements, that show a higher hardness in the surface even
though the second phase fraction is lower, as it can be seen in figure 4.46. This results in negative
correlation coefficients between the hardness and the segmentation results. The smaller second
phase object size in the surface probably contributes to the higher hardness in this position too.
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(a) Surface (b) Quarter thickness (c) Half thickness
Figure 4.45: Microstructural gradient. Sample 1449, 200x magnification, Zeiss Axio Imager.M2m,

optimal imaging settings.
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Figure 4.46: Hardness correlations with segmentation results. Sample 1449.

The appearance of the microstructure from the sample 1453 is similar to the 1449. The sample
1453 also shows a similar tendency to 1449 regarding the size of the second phase objects and
the second phase fraction: they both increase with depth, as it can be seen in figures 4.47 and
4.48. Hardness on the other hand shows the opposite trend, with lower values at the surface. In
this case, the influence of the centerline segregation probably explains these results. This effect
was more noticeable in this sample, as it is shown in figure 4.47 (c). The concentration of solute
that leads to big bands of second phase in the half of the plate could have influenced the hardness
measurements, as these objects can take up a significant fraction of the indentation. This is also
reflected in the object area estimation, where the mean and the standard deviation for the center
of the sample is the highest among all the ROI analyzed.
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(a) Surface (b) Quarter thickness (c) Half thickness
Figure 4.47: Microstructural gradient. Sample 1453, 200x magnification, Zeiss Axio Imager.M2m,

optimal imaging settings.
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Figure 4.48: Hardness correlations with segmentation results. Sample 1453.

As shown in the figures above, these results were used to calculate a simple linear regression
model between the hardness and the selected microstructural features. The linear fit equations are
shown in table 4.4.

For the samples 1311 and 1317, a stronger dependence between the area of the second phase
objects and the hardness was observed. This can possibly be linked to the higher complexity
observed in the microstructure, with presence of difference constituents and an uneven distribution
in the matrix.

In the samples 1449 and 1453, on the other hand, the second phase fraction has a higher
correlation with hardness. Nonetheless, a correlation with the second phase object mean area
was also observed. A possible reason for this is the interaction between two opposing effects: the
segregation, leading to a higher second phase fraction towards the core, and a faster cooling at the
surface that results in harder constituents. When the segregation effect prevails, as seen in sample
1453, the result is higher center hardness. On the other hand, when faster cooling dominates, as
in sample 1449, the surface exhibits higher hardness.

Lastly, for the pearlitic samples, B250 and C925, the mean second phase object area did not
show a correlation with the hardness values. In these cases, the second phase fraction still yielded
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a good correlation fit. This behaviour can be related to a higher uniformity inside the pearlitic
class, that resulted in a hardness value dependent primarily on the amount of second phase at each
spot.

Table 4.4: Hardness correlations linear fit. (HV=vickers hardness, SPF=second phase fraction,
A=mean object area).

Sample Equation R²

1311
HV = 173 + 176 · SPF 0.96

HV = 210 + 0.69 · A 0.98

1317
HV = 135 + 272 · SPF 1

HV = 193 + 0.72 · A 0.76

1449
HV = 218 - 64 · SPF 0.59

HV = 209 - 0.04 · A 0.61

1453
HV = 193 + 62 · SPF 0.86

HV = 203 + 0.03 · A 0.71

B250
HV = 127 + 121 · SPF 1

HV = 149 + 0 · A 0.01

C925
HV = 45 + 369 · SPF 0.64

HV = 145 + 0 · A 0

A variety of correlations could be observed as a result of the model predictions. For some
samples, the trends follow the expected tendency, backing up the idea of a microstructural gradient
across the sample thickness. This is the result of the partition of the alloying elements leading to
segregation and also consequence of the thermal gradient produced during the cooling phase. Both
effects depend largely on the thickness of the plate and the cooling rate.

In the pearlitic samples, the biggest differences were found at the surface, with the quarter and
half thickness positions displaying more uniform properties. This is probably a consequence of the
slower cooling rate and higher thickness of these samples compared to the bainitic ones. While the
surface inevitably cools down faster, at a quarter and half thickness (around 25 and 50 mm from
the surface respectively) a more even distribution of the alloying elements as well as of the heat
results in a more uniform microstructure.

The samples classified as bainitic / martensitic are more complex to analyze. Even if the
thickness of these plates (23.7 mm) is much smaller than the pearlitic ones, the faster cooling rate
leads to more pronounced gradients in the microstructure. Moreover, the limitation of the model
to distinguish martensite from bainite is also a limiting factor, as the presence of both constituents
is highly likely in these samples. Even the bainitic class itself encompasses a variety of constituents
with different properties and morphology.

However, the decision to merge these constituents into the same class responds to the objec-
tive of developing a model capable of working on only LOM images. The inherent limitation of
this technique regarding the resolving power makes it impossible to distinguish these constituents
consistently and reliably, as their features are too small. Nonetheless, by considering this heteroge-
neous group in a single class, the model is able to produce predictions precise enough to establish
correlations between the results and mechanical properties.

Moreover, this is achieved by using only light optical micrographs, without information about
the thermal history of the sample or chemical composition. For this reason, the results are still
very valuable. However, in order to make a more detailed interpretation of the results, these other
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factors cannot be ignored, as they might explain the differences in the trends observed between
the samples.

In most samples, larger second phase object areas correlate with increased hardness. Yet, the
opposite behaviour might be expected, as smaller objects are more effective barriers to dislocation
movement, which translate into a harder material. However, in all cases the area and second phase
correlations have the same sign. Therefore, it is possible that the effect of the second phase fraction
has a bigger impact on the hardness, making it impossible to separate the effect of the object area.
One possible way to further analyze this would be to include more ROI across the sample thickness,
to have more data points and calculate a multi variable linear regression model, incorporating a
term that accounts for the interaction effect, as shown in equation 4.1.

HV = m1 · SPF +m2 ·A+m3 · SPF ·A+ b (4.1)

These results validate the idea that is possible to establish correlations between the quantitative
evaluations carried out by the machine learning model and the mechanical properties of the steel.
This technique ensures that the analysis is done objectively, efficiently, and reproducibly. Further
efforts are required to develop an instance segmentation model able to tell apart adjacent objects
in order to produce more accurate results, especially regarding the morphological parameters of
the particles. Nonetheless, these results by themselves are not only useful but also feasible to
implement at an industrial scale.
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Chapter 5

Conclusions

Convolutional neural networks have been applied to many different tasks and achieved outstanding
performances. The use of data augmentation and application-tailored network architectures has
proven that they can also be implemented in fields where the amount of annotated data is limited.
In this study, the feature extractor from DenseNet 201 trained with the ImageNet database was
successfully employed as encoder for the U-NET architecture. Three generation of models were
trained for semantic segmentation of the matrix and second phase objects from two-phase steel
light optical micrographs.

Traditional microstructural characterization done by human experts is a complex, time con-
suming and costly task. Furthermore, as the microstructures continue to become more and more
complex, the subjectivity and experience of the metallographer introduces more variance to the
results.

To address this issue, several models have been trained and tested. The final model can con-
sistently and objectively segment the microstructure using only light optical micrographs. This is
extremely valuable as light optical micrographs are relatively simple and cheap to produce, thus
making it feasible for implementation on an industrial scale.

The incorporation of industrial data to the models together with the variance introduced by
the images taken with different microscopes, cameras and acquisition conditions greatly enhanced
the robustness and overall performance of the final model. Moreover, the iterative optimization
approach, with the utilization of the segmentation results as masks for the training of the next
generation models, proved to be effective and efficient. Not only did this strategy improve the
performance, but also reduced the amount of manual annotation necessary, which is both expensive
and time consuming. However, it is worth noting that for some images, hand-correction of the
masks was still necessary.

The final model was able to successfully segment light optical micrographs from different mi-
croscopes and acquisition conditions consistently. A better detection of the second phase objects
as well as less variation related to the image acquisition conditions has been observed.

However, there are still cases where the performance is not as good as expected. The segmen-
tation results for 1000x magnification and for high resolution images were not satisfactory. This
might be related to the lack of images taken under these conditions in the training data set. Given
the observed trend, it is possible that the incorporation of the last results as masks to the training
data could lead to further improvement of the model in a subsequent generation.

The results from the model were used to identify and quantify the second phase fraction on
unseen samples. Morphological parameters of the objects could also be calculated from the seg-
mentation masks. However, the intrinsic limitation of the semantic segmentation model lies in its
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inability to detect adjacent particles as separated. This constrains the representation of individual
objects, which is necessary to achieve more accurate and meaningful results.

Nonetheless, a correlation between the hardness, the second phase fraction and mean object area
could be determined. The results were accurate enough to detect variations in the microstructure
across the plate thickness, which originate due to segregation and cooling dynamics. This backs
up the idea that it is possible to use the results from the model for correlation with mechanical
properties. On the same line, the results may also be used for correlation with thermomechan-
ical treatment parameters, thus providing valuable information in the ever-changing industrial
processes.

The next logical step in the model development would be to incorporate the results from the last
iteration as masks to train a new generation, trying to improve the performance, especially in high
magnification and high-resolution images. In addition to this, the next challenge in computer vision
artificial intelligence applied to microstructural analysis is to develop an instance segmentation
model, aiming to increase the precision in the morphological parameters’ measurement. Lastly,
the combination of this model with a grain boundary detection model could contribute to a more
integral understanding of the microstructure.

At the same time, the possibility of including more ROIs across the sample thickness is a
promising approach to further test the model predictions, trying to establish more complex cor-
relations with the hardness. On the same direction, the realization of other mechanical tests on
the samples might be useful to test the validity of other parameters such as the axial ratio and
orientation of the second phase objects.

The implementation of artificial intelligence in the materials science field has already proved
to be very valuable and still has a lot of room for further development and improvement. These
models constitute only a demonstration of what these techniques can accomplish.

Machine learning is a powerful tool to visualize, process and interpret data. In this context, it
can act as a link between the microstructure, the processing steps, the chemical composition, and
more importantly, the steel properties.

The importance of these developments lies not only in the possibility to automate work, but also
in making microstructural characterization more objective, consistent, and efficient. Moreover, the
rapid development of these techniques can also lead to the establishment of unseen correlations,
making it possible to innovate in steel processing and product development.
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I Complete report of results for the sample C925

(a) Input image (b) Segmentation
overlay

(c) 2nd phase object
recognition (not clear

borders)

(d) 2nd phase object
recognition (clear

borders)
Figure 1: Model results. Sample C925, 200x magnification, surface, Zeiss Axio Imager.M2m,

optimal imaging settings.

(a) Input image (b) Segmentation
overlay

(c) 2nd phase object
recognition (not clear

borders)

(d) 2nd phase object
recognition (clear

borders)
Figure 2: Model results. Sample C925, 200x magnification, quarter thickness, Zeiss Axio

Imager.M2m, optimal imaging settings.

(a) Input image (b) Segmentation
overlay

(c) 2nd phase object
recognition (not clear

borders)

(d) 2nd phase object
recognition (clear

borders)
Figure 3: Model results. Sample C925, 200x magnification, half thickness, Zeiss Axio

Imager.M2m, optimal imaging settings.
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Table 1: Second phase fraction segmentation results. Sample C925, 200x magnification, Zeiss
Axio Imager.M2m, optimal imaging settings.

Position Image number Matrix Pearlite Bainite / martensite

S

1 0.682 0.318 0

2 0.725 0.274 0

3 0.767 0.233 0

4 0.73 0.27 0

Q

1 0.712 0.288 0

2 0.69 0.31 0

3 0.72 0.28 0

4 0.75 0.25 0

H

1 0.761 0.238 0

2 0.759 0.237 0.004

3 0.72 0.279 0.001

4 0.742 0.257 0

Table 2: Quantitative analysis. Sample C925, not clear borders

Surface Quarter Half

Segmentation
2nd phase fraction

0.27 ± 0.03 0.28 ± 0.02 0.25 ± 0.02

Manual Point Count
Second phase fraction

0.32 ± 0.02 0.30 ± 0.05 0.29 ± 0.02

Hardness 150.90 ± 3.62 146.30 ± 2.49 138.00 ± 3.95

Area 100.21 ± 554.95 167.32 ± 873.35 110.5 ± 687.66

Convex Area 184.74 ± 1239.01 303.32 ± 1755.83 197.28 ± 1448.57

Equivalent Diameter 7.05 ± 8.83 7.73 ± 12.38 7.39 ± 9.28

Major Axis Length 12.71 ± 25.15 15.18 ± 38.16 13.6 ± 25.81

Minor Axis Length 5.56 ± 6.85 5.81 ± 8.35 5.84 ± 7.15

Perimeter 44.17 ± 158.14 59.19 ± 226.01 44.93 ± 139.12

Filled Area 103.33 ± 598.95 174.56 ± 934.28 112.83 ± 719.26

Max Feret 12.52 ± 23.62 14.8 ± 34.84 13.43 ± 24.16

Solidity 0.86 ± 0.13 0.86 ± 0.13 0.84 ± 0.14

Eccentricity 0.79 ± 0.15 0.79 ± 0.15 0.81 ± 0.15

Orientation 0.0 ± 0.97 -0.06 ± 0.97 -0.01 ± 0.94

Convex Perimeter 8.4 ± 12.84 9.36 ± 17.28 8.88 ± 13.13

Axial Ratio 2.05 ± 0.93 2.1 ± 1.14 2.21 ± 1.14
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(a) Area (b) Convex Area

(c) Perimeter (d) Convex perimeter

(e) Max Feret diameter (f) Equivalent diameter

(g) Major axis length (h) Minor axis length
Figure 4: Morphological parameter distribution plots. Sample C925, quarter thickness, not clear

borders.
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(i) Axial ratio (j) Eccentricity

(k) Orientation (l) Filled area

(m) Solidity
Figure 4: Morphological parameter distribution plots. Sample C925, quarter thickness, not clear

borders. (cont.)
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