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Resumen 

El uso de materiales base ligeros, como los compuestos reforzados con fibra de 

carbono (CFRP), puede mejorar la eficiencia energética de los vehículos de pasajeros 

entre un 6% y un 8% por cada 10% de reducción de peso, lo que aplicado a vehículos 

eléctricos e híbridos fomentaría una mayor competitividad y atracción hacia la nueva 

generación del transporte. Dentro del grupo de estructuras más eficientes que ofrecen 

muy bajo peso y buenas propiedades mecanicas, se destacan las estructuras tipo 

sándwich. Normalmente éstos se componen de un par de placas de cubierta, llamadas 

pieles, de polímeros reforzados con fibras o de aluminio, y núcleos celulares de muy 

baja densidad (por ejemplo, espumas, Nomex® o núcleos tipo panal de abeja o ho-

neycomb de aluminio). En la actualidad, el uso de materiales de tipo celular para nú-

cleos ha ganado mayor atención y es tendencia en el área de los diseñadores de 

materiales. En este contexto, las estructuras celulares ultraligeras de diseño utilizan 

los principios de carga orientada con el material base, aprovechando su anisotropía, 

como es el caso de los núcleos honeycomb 3D y los reticulados o lattices basados en 

CFRP. 

El objetivo principal de este trabajo fue contribuir a la investigación en diseño y 

estudio del comportamiento mecánico de nuevos materiales de tipo núcleo celular, a 

través de diferentes enfoques. El trabajo se centra en núcleos de muy baja densidad 

para aplicaciones sándwich (𝜌𝑐  < 48 kgm-3), basados en CFRP, presentando mayor 

rigidez y resistencia en comparación con sus contrapartes comerciales. En estos tér-

minos, el alcance de este trabajo se dirigió a tratar tres puntos focales: 

1. Explorar el diseño y la fabricación de nuevos tipos de núcleos sándwich ultrali-

geros: se propusieron enfoques originales de diseño: (a) núcleos honeycomb 3D, 

desarrollando el método fabricación por enclavamiento mecánico; (b) núcleos reticu-

lados, con foco en su diseño a partir de materiales prefabricados. En ambos casos, la 

función objetivo fue lograr núcleos de ultrabajo peso y, a su vez, obtener un panel 

sándwich completo, alcanzándose buena calidad de terminación y repetibilidad. 

2. Estudiar el comportamiento de los núcleos propuestos por casos de carga típi-

cos, identificando y prediciendo sus modos principales de falla: Se estudió la relación 

morfológica de los núcleos y sus propiedades mecánicas, a partir de las geometrías 

de las celdas unitarias que los componen y de las propiedades mecánicas del material 



  

 

base, con el fin de desarrollar modelos analíticos para predecir y estudiar los modos 

de falla de las estructuras obtenidas. Estos modelos fueron complementados por si-

mulaciones por elementos finitos (FE) con buena correlación. Así, se perfilaron los 

modos principales de falla para evaluar el comportamiento del material previo a los 

ensayos. Como primera etapa, el trabajo se centra en el estudio de los núcleos en 

compresión fuera del plano y cizallamiento de placa, para luego complementarse con 

una investigación en flexión en 4 puntos, evaluando el panel sándwich como conjunto, 

siendo la rigidez de los núcleos y los espesores de piel las variables.  

3. Caracterizar el comportamiento mecánico de los núcleos y de los paneles sánd-

wich, propuestos para la retroalimentación de modelos: se llevaron a cabo una serie 

de ensayos mecánicos cuasiestáticos, en base a los estados de carga previamente 

establecidos. Se correlacionaron los datos experimentales y las predicciones de los 

modelos, proporcionando una retroalimentación para su validación. Los datos experi-

mentales se encuentran en buena correspondencia con los modelos de predicciones.  

Los núcleos honeycomb 3D presentaron densidades de 38,67 – 47,64 kgm-3; 

mientras que los núcleos reticulados, densidades de 8,66 – 49,7 kgm-3. El rango menor 

de densidad representa un tipo de núcleos que aun no ha sido explotado. Ambos nú-

cleos exhibieron avances en el desempeño mecánico específico en comparación con 

otros materiales de núcleos conocidos, por ejemplo, en algunos casos superando en 

compresion en 35,5 % en términos de resistencia y en 124,6 % en términos de rigidez 

al mejor material competidor; y en cizallamiento, con módulos de corte de 5 a 6 veces, 

e índices de resistencia de 2,7 a 4,5 veces mayores que los núcleos competidores de 

arquitectura cuadrada.  

Esta disertación brinda nuevos enfoques para la obtención de núcleos celulares 

de ultrabajo peso, cuyas características de celda abierta, además ofrece potenciales 

aplicaciones multifuncionales (por ejemplo, transferencia de calor, capacidad de re-

fuerzo con espumas, o la incorporación de cables o electrónica). Los núcleos de es-

tudio representan una alternativa atractiva a los núcleos celulares tradicionales metá-

licos y/o poliméricos y, al mismo tiempo, siendo materiales sencillos de fabricar. Los 

modos de falla predichos por los resultados analíticos brindan una herramienta de 

interés para diseñadores de materiales en diferentes aplicaciones, pudiéndose cono-

cer las propiedades mecánicas del panel sándwich antes de su fabricación. 



 

 

Abstract  

The use of lightweight base materials, such as carbon fibre reinforced composites 

(CFRP), can improve the energy efficiency of passenger vehicles by 6-8% for every 

10% reduction in weight, which, when applied to electric and hybrid vehicles, would 

make them more competitive and attractive to the new generation of transport. Within 

the group of more efficient structures offering very low weight and good mechanical 

properties, sandwich structures stand out. These typically consist of a pair of cover 

plates, called skins, made of fibre-reinforced polymers or aluminium, and very low-

density cellular cores (e.g., foams, Nomex® or aluminium honeycomb cores). Nowa-

days, the use of cell-type materials for cores has gained increased attention and is a 

trend in the area of material designers. In this context, ultra-lightweight cellular design 

structures use the principles of oriented loading with the base material, taking ad-

vantage of its anisotropy, as in the case of CFRP-based 3D honeycomb cores and 

lattices. 

The main objective of this work was to contribute to the research in design and 

study of the mechanical behaviour of new cellular core-type materials, through different 

approaches. The work focuses on very low-density cores for sandwich applications 

(𝜌𝑐  < 48 kgm-3), based on CFRP, presenting higher stiffness and higher strength com-

pared to their commercial counterparts. In these terms, the scope of this work aimed 

to address three focal points: 

1.  To explore the design and fabrication of new types of ultra-lightweight sandwich 

cores: original design approaches were proposed: (a) 3D honeycomb cores, develop-

ing the fabrication method by mechanical interlocking; (b) lattices cores, with focus on 

their design from prefabricated materials. In both cases, the objective function was to 

achieve ultra-low weight cores and, at the same time, to obtain a complete sandwich 

panel, achieving good finish quality and repeatability.  

2.  To study the behaviour of the cores proposed for typical load cases, identifying, 

and predicting their main failure modes: The morphological relationship of the cores 

and their mechanical properties was studied, based on the geometries of the unit cells 

that create them and the mechanical properties of the base material, in order to de-

velop analytical models to predict and study the failure modes of the structures ob-

tained. These models were complemented by finite element (FE) simulations with good 



  

 

correlation. Thus, the main failure modes were profiled to evaluate the behaviour of 

the material prior to testing. As a first stage, the work focuses on the study of the cores 

in out-of-plane compression and plate shear, and then complemented by a 4-point 

bending investigation, evaluating the sandwich panel as a whole, with core stiffness 

and skin thicknesses as variables.  

3.  To characterise the mechanical behaviour of the cores and sandwich panels, pro-

posed as model feedback: a series of quasi-static mechanical tests were carried out, 

based on previously established loading states. Experimental data and model predic-

tions were correlated, providing feedback for validation. The experimental data are in 

good correspondence with the model predictions.  

The 3D honeycomb cores presented densities of 38.67 - 47.64 kgm-3; while the 

lattices cores showed densities of 8.66 - 49.7 kgm-3. The latter lower density range 

represents a type of core that has not yet been exploited. Both cores’ cases exhibited 

advances in specific mechanical performances compared to other known core materi-

als, for example, in some cases outperforming the best competing material in com-

pression by 35.5 % in terms of strength and 124.6 % in terms of stiffness; and in shear, 

with shear moduli 5 to 6 times, and shear strengths 2.7 to 4.5 times higher than com-

peting cores with square architecture.  

This dissertation provides new approaches to obtain ultra-lightweight cell cores, 

whose open cell characteristics also offer potential multifunctional applications (e.g., 

heat transfer, foam reinforcement capability, or the incorporation of wires or electron-

ics). The studied cores represent an attractive alternative to traditional metallic and/or 

polymeric cell cores while being simple to fabricate. The failure modes predicted by 

the analytical results provide a tool of interest for material designers in different appli-

cations, being able to know the mechanical properties of the sandwich panel before its 

fabrication. 
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1 Introduction 

1.1 Background 

Human activities have an impact on the environment around us. Materials and 

energy resources consumption while releasing dangerous waste products into the en-

vironment are threatening the well-being of future generations [1]. After the 21st Paris 

Conference, the 175 signatory parties (174 plus the European Union, EU) pledged to 

invest and intensify the necessary actions to combat climate change, while reducing 

greenhouse gases [2]. In this matter, the EU has established, by 2021, new regulations 

for exhaust gases in new transport vehicles, in which car manufacturers must provide 

a fleet of vehicles capable of generating an average of less than 95 g/km of CO2. Ac-

cording to Nikowitz [3], only combustion engine powered vehicles capable of achieving 

this goal are sub-compact vehicles that weigh less than 1200 kg. In order to reach CO2 

emissions requirements while responding to increasing demands in comfort, further 

hybridization and electrification of the automotive fleet turns out to be inevitable.   

Besides improved aerodynamics and rolling friction, the production of lightweight 

vehicles is the main strategy of automotive and transport related industries to increase 

fuel efficiency, reduce emissions, or improve energy economy [4]. The use of light-

weight materials, such as carbon fibre reinforced polymers (CFRP), can improve the 

energy efficiency of passenger vehicles by between 6% and 8% for every 10% weight 

reduction, while making electric and hybrid vehicles more competitive [5]. In other 

words, a reduction of 100 kg can reduce CO2 emissions by almost 10 g per driven 

kilometre [6].  

Today´s manufacturers are employing new material-based concepts into passen-

ger series vehicles. Low-weight metal alloys, composites materials and hybrid struc-

tures have been implemented for many years. For example, Audi AG has incorporated 

the CFRP materials directly as a part of high-performance body structure (Figure 1.1). 

In particular, CFRP based materials offer the greatest potential for weight savings (40 

– 60%) but costs 2 to 10 times compared to its metal counterparts [7].  

Once developed for aerospace applications and then transferred to high-perfor-

mance race cars, fibre reinforced polymers (FRP) have been stablished as base raw 

materials for construction of lightweight sensitive structures, due to their high specific 
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mechanical properties as stiffness and strength [8,9]. The actual trends indicate that 

raw materials with more lightweight potential (i.e. lower weight for assembly groups) 

as FRP are in focus of development and will gradually replace various components in 

transport industries as automotive, aerospace, naval and railroad [5,10–14]. Thus, the 

global demand of CFRP components has been growing in the last few years and the 

prognosis shows a sustained growth (see Annex A). 

 

Figure 1.1. Audi Space Frame [Source: Audi AG] 

Within the group of structures that offer a highly lightweight potential, sandwich-

type structures stand out [15]. They are typically made-up of pairs of FRP (or alumin-

ium) faces and a low density cellular cores (e. g., foams, Nomex®, aluminium honey-

combs), as is the case in modern airliners for many components (Figure 1.2) and are 

now established as secondary structures for business aircraft considering their great 

cost-reliability/weight ratio [16,17]. Typically use of sandwich panels is found in heli-

copters [18] or aerospace [19,20] applications. In this context, the use of cellular-type 

materials has now gained greater attention and is the trend among material designers 

in the field. As an example of the trend in research, CFRP square-honeycombs cores 

[21] or lattice-based cores i.e., an array of interconnected bars [22,23], are being tar-

geted. 
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 Construction methods based on cellular structures applied to ultra-lightweight 

sandwich cores, (i.e., in this case, as cores with less than 48 kgm-3 [24]), not only offer 

advantages in terms of weight  [24,25], but are also synonymous of efficient use of 

materials and principles of oriented loading, as is the case of lattice-based materials. 

Currently, lattice-based materials are mainly made from titanium and other metal alloys 

[26,27], which leaves room for the exploitation of other parent materials such as FRP, 

given their outstanding specific mechanical properties [22]. 

 

Figure 1.2.  Boeing 787 Dreamliner materials airframe [28] 

In these terms, the scope of this work essentially targets three focal points:  

I. To explore the design of new-kind of ultra-lightweight sandwich cores based on 

CFRP, with focus on the manufacturing of square-honeycomb cores. 

II. To characterise the designed core materials by typical loading cases, identifying 

their principal failure modes. 

III. To study the overall sandwich panel mechanical behaviour by bending.  

1.2 Dissertation hypothesis 

In theory, it would be possible to manufacture ultra-lightweight cores with 

complex geometries into a 3D square-honeycomb pattern based on CFRP, by com-

bining cutting-edge designs and different out-of-autoclave (OOA) processing tech-

niques.  
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The development of CFRP-based ultra-lightweight materials from 3D square-

honeycomb or lattice-based cores for sandwich applications, would be mechanically 

superior and competitive with most commercially known materials.  

By analysing typical loading cases such as compression, shear or bending, it 

would be possible to predict the properties of a sandwich core and/or a sandwich struc-

ture such as its stiffness and strength, by developing theoretical and numerical models, 

based on a representative unit repetitive cell, and employing the parent material´s elas-

tic properties.  

Additionally, theoretical failure prediction models in a form of failure maps, can 

be contrasted by numerical models and then verified throughout series of quasi-static 

experimental tests, regarding to the typical loading cases.  

The results of the experimental tests could be used as feedback for the analytical 

and numerical models for validation and further improvements through an iterative 

procedure. 

1.3 Dissertation goals 

1.3.1 Primary goals  

The main objective of this work is to contribute to the research in the studies of 

design and the mechanical behavior of new cellular core materials for sandwich appli-

cations, by considering two different core approaches. The work focuses on the study 

of very low-density cores for sandwich applications, employing CFRP as base material, 

showing higher stiffnesses and strengths in contrast to their commercial counterparts.  

1.3.2 Specific goals  

The expansion of the state of knowledge which is intended with this dissertation 

is based on specific goals resumed in three main working packages: 

1. Development of sandwich cores based on CFRP materials, as an alternative to 

the already known core-materials. Two approaches are studied as (i) 3D hon-

eycombs cores based on CFRP plates; (ii) Lattices-cores based on CFRP rods. 

The main feature is to reach an ultra-lightweight core density. For case (i), also 

the manufacturing aspects are presented, including several known advanced 
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composite materials processing techniques such as the vacuum assisted resin 

infusion (VARI or VI) or the hot press method.  

2. Investigation of the structural behaviour of the sandwich cores under typical 

loading cases. Study the relationship between the morphology of the cores and 

their mechanical properties, based on the unit cell´s topologies and the elastic 

properties of the base material, for developing analytical and numerical models 

to predict the elastic properties and the failure modes of the structures obtained. 

In this sense, outlining the so-called “failure maps” to evaluate the failure be-

haviour of the material in advance. As a first stage, the work focuses on the 

study of cores´ behaviour under out-of-plane compression and plate shear, and 

it is complemented with a four-point bending investigation, where eventually the 

whole sandwich assembly is evaluated. For bending evaluation, models based 

on lattice-cores are presented as case of study, later transferred to other core 

cases.  

3. Experimental determination of the proposed materials properties by a series of 

quasi-static tests, based on the previously considered loading cases. The ex-

perimental data and the models’ predictions are contrasted and correlated, 

providing feedback to validate and improve the models. A comparison to con-

current materials is provided and discussed, and final conclusions are promoted 

to consolidate the results. 

1.4 Dissertation outline  

The work is outlined in 8 chapters as follows:  

Chapter 1 discusses the motivation, the hypothesis, the objectives and estab-

lishes the background of the dissertation.  

Chapter 2 reviews the general aspects concerning fibre reinforced polymers, 

the materials processing methods of interest and the theoretical mechanical back-

ground issued to these materials.  

Chapter 3 presents the state of the art of sandwich structures including con-

cepts and types. In addition, the main loading cases are addressed with the different 

likely failure modes.  

Chapter 4 describes the concept, design, and fabrication of novel ultra-light-

weight sandwich cores such as the 3D-honeycomb cores based on CFRP laminates. 
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Micro and macro-mechanical models are presented for predicting the cores´ stiffness 

and strength (including failure modes), while studying out-of-plane compression and 

plate-shear loading cases. The theoretical models are complemented by finite element 

simulations (FE) developed via commercial software FEMAP™ 10.3 with NX™ Nas-

tran® [29], and later validated favourably by experimental tests. 

Chapter 5 describes the concept and the design of ultra-lightweight BCC-like 

lattice cores based on CFRP rods. Analogously to Chapter 4, theoretical and numerical 

models for predicting the cores´ elastic properties are provided for out-of-plane com-

pression and plate-shear loading cases. Experimental tests are carried out for validat-

ing the models with very good correspondence.  

Chapter 6 focuses on four-point bending studies of sandwich panels taking as 

case of study the lattice-based cores. The studies include theoretical models for pre-

dicting sandwich failure behaviour when increasing the skin thickness or varying core 

stiffness. FE simulations complement and give support to the theory. Experimental 

tests contrast and validate satisfactorily the models. 

Chapter 7 analyses the competitiveness of the proposed materials, contrasting 

the work upon other research and commercial materials typically employed in sand-

wich cores. A summary of the conclusions gathered along the work is provided.  

Chapter 8 summarizes the dissertation and suggests several enhancements for 

future work. 
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2 Composite materials: general aspects 

The term "composite" (as a compound) in composite materials refers to the fact 

that two or more materials are combined on a macroscopic scale (visible to the naked 

eye) to form a third material with properties sought for a specific application [8]. The 

bonding between the matrix and the fibres occurs during the manufacturing process, 

with the creation of the interface that will have a fundamental influence on the mechan-

ical properties of the material produced [9]. Fundamental features of composite mate-

rials are high strength, high stiffness, high elastic modulus, resistance to corrosion, 

impact, fatigue, wear, low weight, etc. Composites can be classified into four main 

types according to their morphology [8]: 

- Composite materials reinforced with fibres, consisting in fibres within a matrix. 

- Laminate composite materials, obtained from layers of one or more materials. 

- Particulate composite materials, where particles are distributed in a matrix. 

- Combinations of any or all the previous three. 

In particular, Ashby [1] classified composite materials according to three broad 

categories: metallic, ceramic, or polymeric compounds, according to the base material 

of the matrix. The focus of this dissertation is set on those thermoset polymer matrix 

composite materials reinforced with synthetic fibres as carbon fibre reinforced poly-

mers (CFRP), with an overlook to a potential application in passenger transportation, 

aerospace or other high performance uses. 

2.1 Fibre reinforced polymers (FRP): main concepts 

Fibre reinforced polymers (FRP) consist of continuous or discontinuous fibres, 

natural or synthetic, of high strength and high elastic modulus, embedded in and 

bonded to a matrix through an interface, which will determine the final behaviour of the 

composite under the acting stresses. The combination of both main components gen-

erates properties that could not be obtained with either of them acting separately. Gen-

erally speaking, the fibres carry the major portion of the loads, while the surrounding 

matrix keeps them in the desired location and orientation, acting as a load-transferring 

medium between the two and protecting them from environmental damage. Focusing 
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on long fibres, the basic building block of a compound fibre-matrix is the layer (or lam-

ina) being a flat arrange of fibres in the matrix. The FRP are made from an assembly 

of layers to form a composite laminate. Commonly, the two typical flat layers are pre-

sented as shown in Figure 2.1, and the principal axes are exhibited parallel and per-

pendicular to the fibre directions [8]. Woven layers are made of fibres oriented along 

two perpendicular directions: the warp and the fill (or weft). In woven cloths, the fill 

yarns pass over and under the warp yarns, following different fixed patterns such as a 

plain weave (as in Figure 2.1.b), twill (each fil yarn pass over two warp yarns) or satin 

pattern (each fill yarn pass over four warp yarns). Due to their low density, fibre-rein-

forced polymers offer comparable or better mechanical properties to traditional metallic 

materials, exhibiting outstanding strength-to-density and modulus-to-density ratios and 

nowadays are in an increasing demand [8]. 

(a) (b) 

 

 

 

Figure 2.1. Two basic building blocks of a laminate. (a) Unidirectional. (b) Woven. [30] 

2.1.1 Fibres 

Fibres (synthetic or natural) are used as reinforcement for polymers because 

they present high mechanical properties as strength and stiffness, and low weight. Fi-

bres yarns consist of thousands of filaments with diameters ranging from 5 to 15 mi-

crons and can be produced using textile machines. They are available as short or long 

fibres, depending on the production process. In addition, fabrics with long fibre ar-

rangements can take the following forms: unidirectional (yarns, ribbons, or linear ar-

rangements in fabric), bidirectional (woven or non-woven fabrics with fibres following 

two directions), three-dimensional or multidirectional (fabrics with fibres following more 

than two directions). 
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The main materials available as synthetic fibres are glass, aramid (polymeric), 

carbon, boron, and silicon carbide [9]. While the most common natural plant fibre base 

materials include one or more of the following: jute, sisal, hemp, coconut, oil palm, date 

palm, kenaf, ramie, pineapple leaf, cotton, flax, curagua, bamboo and rapeseed [31]. 

Synthetic fibres are the most widespread fibres such as glass fibres and those for high 

performance use such as carbon or aramid fibres [9,30,32–34], and a brief comparison 

example is made among a few type of fibres in the following section. 

 Since this work focuses on the use of carbon fibre fabrics, a general description 

of this reinforcement is provided in section 2.1.1.2. 

2.1.1.1 Comparison of fibre properties 

The main interest of the present dissertation is the development of high perfor-

mance lightweight structures. Thus, the specific properties of the reinforcing materials 

are compared within this section, i.e., the tensile strength over density ratio as 𝜎 𝜌⁄ , 

and the Young's modulus over density ratio as 𝐸 𝜌⁄ . The specific mechanical properties 

act as indicator of the effectiveness of the reinforcement fibre in weight-sensitive ap-

plications (material performance index, PI). 

Table 2.1. Properties and indices of commonly used fibre reinforcements.  

Type of  
fibre 

Density 𝜎 𝜌⁄  𝐸 𝜌⁄  
Elongation 

at break 
Fibre  

diameter 

(kgm-3) (MPa/kgm-3) (MPa/kgm-3) (%) (µm) 

E-glass 2500 1.36 29 4.8 10 

S-glass 2440 1.97 35 5 10 

Carbon T300 1760 2.07 140 1.4 7 

Aramid 
Kevlar49 

1440 2.49 90 2.8 11.9 

Jute 1300 – 1450 0.30 – 0.53   10 – 18.9 1.16 – 1.5  25.2 

Sisal  1450 0.32 – 0.44 6.4 – 15.1 3 – 7  50 - 200 

Note: adapted from [8,9,32,35] 

Table 2.1 summarises the mechanical behaviour of the fibres commonly used 

in polymer composites, for comparative purposes. In order to evaluate the performance 

of materials for a given application, materials selection indices are of high interest [1]. 

It can be seen that carbon fibres present the best material index for stiffness, almost 

five times the E-glass value. The lowest material indices are shown by the natural fibres 
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presenting, for instance, about one tenth the carbon fibres´ stiffness value, although 

still having comparable specific strength indices to the others. 

The mechanical properties are not only relevant from the point of view of load-

bearing capacity, but also its ability to maintain its shape when used as reinforcement. 

The proper selection of fibre type, volume fraction, length and orientation should be 

considered as characteristics that will influence the resulting composite laminate. 

Some of the most relevant properties are density, strength and modulus (in tension or 

compression), fatigue, cost, etc. [32]. 

2.1.1.2 Carbon fibres 

The exploration for alternatives to glass fibres began in the late 1950s, to fulfill 

the need of parts and components having high stiffness and low weight, the search for 

new materials, to obtain high strength and rigidity, strong atomic bonds such as cova-

lent (even superior to metallic ones) was needed. Since 1971, poly-acrylonitrile (PAN) 

textile fibre has been used as a precursor of fibre and has become so popular that 

more than 90% of the market is based on it. The advantages of the raw material PAN 

are that it has a carbon yield of 55% by weight and very high modulus of elasticity and 

tensile strengths, which are adjustable depending on the processing variables.  

The process of obtaining PAN fibres generally consists of oxidizing these base 

materials at 300°C and then carbonizing them at 1500°C in an inert atmosphere during 

another stage. Structurally, with the removal of oxygen and nitrogen, the filaments con-

tain mostly carbon following an aromatic ring-like arrangement of parallel planes 

(graphite-like). The high longitudinal mechanical properties are derived from the gra-

phitic shape (e. g. exhibiting an elastic modulus of 1050 GPa in parallel direction). The 

crystalline structure of an elementary carbon cell is shown schematically in Figure 

2.2.a. On the same plane, each vertex of a hexagon has one carbon bonded to three 

others by a covalent bond; whereas on parallel planes there are only (weak) van der 

Waals forces, being carbon fibres highly anisotropic. Figure 2.2.b shows a growing 

fibre also presenting the arrangement of hexagon chains arrangements. The resulting 

filaments are of glossy black colour.   

There is a wide variety of available fibres that, according to the manufacturing 

process, temperature, time and spinning tension, it is possible to vary the tensile 

modulus ranging from 207 GPa to 1035GPa. The same is valid for the tensile strength 
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since the high processing temperature causes a higher ordering of the crystallographic 

planes (Figure 2.3). 

(a) (b) 

 

 

Figure 2.2. Carbon fibre inner structures. (a) Elementary cell of a graphite lattice [33]. 

(b) Example of a carbon fibre yarn structure [9] 

 

Figure 2.3. The elastic modulus and tensile strength of PAN carbon fibres [36] 

Therefore, carbon fibre properties can be adjusted by controlling the processing 

variables which, at the same time, affects the fibres final cost. With PAN as a precursor, 

it is possible to categorise the resulting carbon fibres into four broad groups as: high 
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tensile strength (HT) one of the most widespread fibre types, intermediate modulus 

(IM), high elastic modulus (HM) and ultra-high elastic modulus (UHM). Table 2.2 

sumarizes the most significant properties of the four mentioned standard PAN-based 

carbon fibre types.  

Table 2.2. Properties of standard PAN-based carbon fibres [33] 

Type of  
carbon 
fibres 

Fibre  
density 

Tensile 
strength 

Tensile 
module 

Compressive 
strength 

Elongation 
at break 

Fibre  
diameter 

gcm-3 GPa GPa GPa % µm 

HT 1.74 3.60 240 2.50 1.50 7 

IM 1.80 5.60 290 4.20 1.93 5 

HM 1.83 2.30 400 1.50 0.57 6.5 

UMS 1.85 3.60 550 1.80 0.65 5 

The advantages of carbon fibres are, as previous mentioned, their very high 

strength-to-weight ratios, as well as the elastic modulus-to-weight ratios, very low 

coefficient of thermal expansion (which provides good dimensional stability), high 

resistance to fatigue and high thermal. The disadvantages are its low deformation at 

break, low resistance to impact and high electrical conductivity, which could cause 

short circuits in non-insulated electrical machinery. Their high cost has conditioned 

them mostly to high performance applications, mainly in the aerospace sector, but also 

in passenger and competition vehicles, boats and certain sporting goods, where low 

weight plays a signifcant role. 

2.1.2 Thermoset polymer matrix 

There are many matrix materials that can be used in combination with fibres to 

produce a composite material with desired features such as very high strength and 

stiffness and still present a low density [8]. As previously introduced, the common ma-

trix materials can be polymers, metals, or ceramics, and within the polymers two broad 

categories emerge as thermoplastic or thermoset based [1,8,32]. Here, the thermoset 

matrices are addressed.  

The primary roles of a matrix in a composite material can be mentioned as fol-

lows: (1) to hold the fibres in place, (2) to transfer stresses between the fibres, (3) to 

provide a barrier against an adverse environment, such as chemicals and moisture; 

(4) to protect the fibre surface from mechanical degradation (e.g., by abrasion, erosion, 
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etc.). The matrix plays a secondary role if the material is subjected to tensile stresses, 

because the fibres act as "wires" and bear most of the loads. On the other hand, if the 

stresses are applied in compression, the matrix provides the material with lateral sup-

port against the possibility of fibre buckling, greatly influencing the compressive 

strength of the composite. They also have an influence on interlaminar loads (i.e., be-

tween layers of the material if it is multi-layered), which is relevant when the material 

is subjected to bending or shear loads. In-plane shear strength (e.g., in a pure shear 

loading case such as torsion of a beam or plate shear) is also influenced by the char-

acteristics of the matrix. In addition, the manufacturing of the component directly af-

fects its final mechanical performance and this will strongly depend on the processing 

variables used when incorporating the matrix into the fibrous reinforcement (for exam-

ple: initial temperature of the resin (that controls its viscosity and cure kinetics) and 

curing cycle configuration, are common variables that must be reported when manu-

facturing components, e.g., for the aerospace industry) [32].  

The most used polymeric matrices in combination with long continuous fibres 

are epoxy, vinylester and polyester resins (ranked in order of highest to lowest cost 

and according to their mechanical properties, the most expensive being the best per-

forming). The former is implemented in aeronautical and aerospace applications where 

low shrinkage, excellent adhesion, better mechanical properties and chemical re-

sistance are required [37], while the latter two are mostly used in automotive, marine 

and electrical applications. The interest of this thesis lies in producing high mechanical 

performance and low weight materials, and therefore, the incorporation of continuous 

and long carbon fibres for reinforcement of epoxy thermoset-based polymeric matrix 

has been selected. 

Among the polymeric structures, three main forms are recognized: linear, 

branched, or cross-linked (Figure 2.4). A linear polymer is classified as long-chain mol-

ecules containing one or more repeating unit of atoms joined together by strong cova-

lent bond along the chain (such as in thermoplastic polymers [32]). The individual long 

molecules are not chemically joined, but they are held together by secondary bonds 

such as van der Waals bonds and hydrogen bonds. They present much lower overall 

strength and stiffness than the other two structures exhibited. Branched polymers have 

a primary polymer chain with other polymer chains attached to it like branches in a 

tree. Cross-linked polymers have a long number of three-dimensional polymer chains 

strongly interconnected by chemical bonds (primary covalent bonds), presenting the 
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highest mechanical strength and stiffness, compared to linear or branched polymers 

[30]. With a few exceptions, thermoplastics are usually linear or branched polymers; 

while thermosets are cross-linked polymers [38].  

 

Figure 2.4. Schematic representation of polymeric structures [30] 

Thermoset polymers are obtained from temperature-favoured chemical reac-

tions, which will bring the system to a certain percentage of cure (conversion).The 

longer and more branching the polymer has in its main chains, the higher the proba-

bility is that the branches will connect [38]. During the curing process, the polymer is 

initially a low viscosity liquid (comprised of linear independent polymer chains), and it 

is transformed into a solid material comprised of a large, cross-linked molecule (as a 

network). Although these materials exhibit rigid-rubber behaviour, they cannot flow as 

thermoplastics do above their glass transition temperature (thermoplastics have sec-

ondary bonding forces between molecules). Therefore, they cannot be remoulded as 

a fluid, even if heated sufficiently, since this will only degrade the polymer by breaking 

the covalent bonds. Thus, crosslinking reactions can be initiated in two ways: (1) start-

ing the reaction with highly-functional monomers, (2) creating the crosslinks between 

already formed linear or branched monomers (through reaction and curing after) as for 

example, curing reactions in epoxy or polyester resins [38]. Due to their low initial vis-

cosity, thermoset matrices allow moulding to be done at room temperature during the 

processing of the composite material.  

In the selection of a matrix for high-performance composite materials based on 

FRP, the primary consideration lies on its basic mechanical properties such as its elas-

tic modulus, strength and toughness once cured. A list of resins´ properties commonly 

used in the material processing of fibre-reinforced polymers (such in liquid composite 

moulding techniques) is presented in Table 2.3. 
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Table 2.3. Properties of commonly used thermoset matrices [9,39,40] 

Type of  
resin 

Density 𝐸 𝐺 𝜎 𝜈 
Elongation 

at break 
Heat  

distortion / limit 

kgm-3 MPa MPa MPa  % °C 

Epoxy 1200 3300 1600 130 0.4 2 90 – 200 

Phenolic 1300 3000 1100 70 0.4 2,5 120 – 200 

Polyester 1200 3300 1400 80 0.4 2,5 60 – 200 

Vinylester 1150 3300  1410 75 0.36 7  ≈ 100 

2.2 Properties and analytical approaches of FRP 

In this section, the general concepts for the mechanical study of the properties of 

FRPs will be established. In the corresponding sections, more in-depth analyses will 

be carried out according to the case of study. 

In practice, the macroscopic description of the structural-mechanical behaviour 

of an FRP-laminate (Figure 2.5) is based on the study of individual unidirectional layers 

(or woven layers, then individualized) and, at the same time, the individual layer de-

pends on the interaction between the base components.  

 

Figure 2.5. Multi-layer composite consisting of individual layers. (Adapted from [30]) 

The fibre-matrix interactions are evaluated following different aspects based on 

the component proportion and distribution over the cross-sectional area within the 

composite (see fibre packing models [30,34]).  

The mechanics of fibre-reinforced composite materials [30,32] are studied on two 

levels: 
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1. Micromechanical approaches: evaluates the interaction of components on a mi-

croscopic scale. In general, the equations that describe the elastic and thermal 

characteristics of a layer are based on micromechanical approaches. 

2. Macromechanical approaches: where the response of a fibre-reinforced compo-

site material to mechanical and thermal loads is studied, considering the material 

as homogeneous on a macroscopic scale, in particular its cross-section and fibre 

distribution [41]. Here, orthotropic elasticity equations are used to calculate 

stresses, strains, and deflections. 

2.2.1 Micromechanics 

To evaluate the fibre-matrix interactions, the following assumptions are consid-

ered [32]:  

a. The fibres are evenly distributed. 

b. There is a perfect bonding between the fibres and the matrix. 

c. The matrix has no voids. 

d. The applied force is only parallel or normal to the direction of the fibre. 

e. The sheet has no residual stresses 

f. Fibres and matrix behave as linearly elastic materials. 

The aim of the micromechanical approaches deals with the determination of the 

elastic moduli or the stiffnesses or compliances of a FRP in terms of the properties of 

the constituent materials [30]. Furthermore, as stated at the beginning of this chapter, 

the objective of the composite material is to obtain a new material with the advantages 

of each individual component to generate a better one. Therefore, the proportions of 

each component are of vital importance for the final properties of our composite mate-

rial, in this case taken as a unidirectional (UD) layer (or UD-laminate of one layer).  

In particular, the proportion of fibres has a direct impact on the strength and stiff-

ness of the material. Thus, the fibre volume fraction φf is one of the most important 

design parameters and it can be calculated by the fibre volume, the relative weight 

(fibre or matrix over total laminate weight), the relative area or the relative thickness, 

(relative to the property of the total composite). The fibre volume fraction can be esti-

mated with Equation (2.1), where factor n is the number of layers (here as UD-laminate 

is equal to the unit), Mf is the areal density of the dry fibres layer (also textile weight), 

ρf is the fibre density and tcomp is the composite thickness.  
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𝜑𝑓 = 𝑛
𝑀𝑓

𝜌𝑓𝑡𝑐𝑜𝑚𝑝
 (2.1) 

Regarding fibre volume fraction of FRP in the aerospace industry, a standard 

value is 60%, with an upper limit of 65% (a higher volume would imply a lack of fibre 

impregnation with the matrix). This percentage by volume varies according to the man-

ufacturing method of the part and the subsequent application [32,34].  

The fibre volume fraction and the fibre orientation influence the UD-layer behav-

iour. To study the UD-layer elastic properties it is necessary first to identify whether the 

external forces are applied normal (2-direction or 3-direction) or parallel (1-direction) 

to fibre orientation (Figure 2.6).  

(a) (b) 

 
 

Figure 2.6. UD-layer loading. (a) Longitudinal. (b) Transverse. 

Then, the main properties are defined according to the parallel and perpendic-

ular directions as follows [34]. 

2.2.1.1 Stresses applied to a UD-layer in parallel orientation 

If the forces are applied over the parallel orientation of the fibres in a UD-layer 

(commonly identify as the 1-direction, as in Figure 2.6.a) considering previous assump-

tions, the following balance of forces, stresses and strains are valid [34]: 

𝐹∥ = 𝐹𝑓 + 𝐹𝑚 ⇒ 𝜎∥𝐴𝑐𝑜𝑚𝑝 = 𝜎𝑓𝐴𝑓 + 𝜎𝑚𝐴𝑚 (2.2) 

∆𝑙𝑐𝑜𝑚𝑝

𝑙𝑐𝑜𝑚𝑝
= 𝜀∥ = 𝜀𝑓 = 𝜀𝑚 (2.3)  

𝜎𝑓 = 𝐸𝑓∥𝜀𝑓     ;     𝜎𝑚 = 𝐸𝑚𝜀𝑚 (2.4) 

 The above stresses and strains (subscript m: represent the matrix; f: the fibres; 

and comp: the composite) are then replaced and equated into Eq. (2.5). Parameter 

lcomp represents the length of the composite and Δlcomp the length of the deformed com-

posite after applying the parallel stress. Moreover, if the parameters are specified in 
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terms of the fibre volume fraction φf, the elastic modulus of the UD-layer composite E∥ 

is given by Eq. (2.6), by means of a rule of mixture. 

𝐸∥ 𝜀∥ 𝐴𝑐𝑜𝑚𝑝 = (𝐸𝑓∥𝐴𝑓 + 𝐸𝑚𝐴𝑚) 𝜀∥ (2.5) 

𝐸∥ = 𝐸𝑓∥𝜑𝑓 + 𝐸𝑚(1 − 𝜑𝑓) (2.6)  

Eq. (2.6) shows that the parallel modulus of a composite UD-layer is in an inter-

mediate value between the modulus of the parallel fibre and the matrix modulus [32]. 

2.2.1.2 Stresses applied to a UD-layer in perpendicular orientation 

Similarly, the study can be carried out in the transverse direction (i.e., perpendic-

ular to the fibres). Assuming that the width of the UD-laminate is Wcomp and after ap-

plying the perpendicular stress, the composite deformation ΔWcomp is reached as the 

sum of the deformation of its constituents, the following equations can be resumed 

[32]:  

Dividing by Wcomp, it is possible to rewrite Eq.(2.9) in terms of the fibres and matrix 

fractions as 

𝜀⊥ = 𝜀𝑓⊥𝜑𝑓 + 𝜀𝑚𝜑𝑚 (2.10) 

Then, specifying Eq. in terms of the stresses as 

𝜎⊥
𝐸⊥
=
𝜎𝑓

𝐸𝑓⊥
𝜑𝑓 +

𝜎𝑚
𝐸𝑚
𝜑𝑚 (2.11) 

Rearranging Eq. (2.11), while assuming σf = σm = σ⟂, the transverse modulus of 

the UD-laminate composite E⟂ (obtained also by a rule of mixtures) is written as  

𝐸⊥ =
𝐸𝑓⊥𝐸𝑚

𝐸𝑓⊥(1 − 𝜑𝑓) + 𝐸𝑚𝜑𝑓
 (2.12) 

The last equation is obtained while assuming many simplifications (e. g., no lat-

eral contractions, no imperfections, sufficient and homogeneous adhesion) and in 

practice the E⟂ may vary from the theoretical approach given by Eq. (2.12). Hence, 

many authors have proposed many more complex approaches (for example, while 

𝜎⊥ = 𝜎𝑚 = 𝜎𝑓 (2.7) 

Δ𝑊𝑐𝑜𝑚𝑝 = Δ𝑊𝑓 + Δ𝑊𝑚 (2.8)  

𝜀⊥𝑊𝑐𝑜𝑚𝑝 = 𝜀𝑓⊥𝑊𝑓 + 𝜀𝑚𝑊𝑚 (2.9)  
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employing different fibre packing models) to achieve more accurate values [42,43]. As 

an example, by using empirical and theoretical models and considering the contraction 

of the matrix as the Poisson´s modulus νm, the transverse elastic modulus E⟂ accord-

ing to Puck [44] is presented in Eq. (2.13). 

𝐸⊥ =
𝐸𝑚

1 − 𝜐𝑚2
1 + 0.85 𝜑𝑓

2

(1 − 𝜑𝑓)
1.25

+
𝐸𝑚

(1 − 𝜐𝑚2 )𝐸𝑓⊥
𝜑𝑓

 
(2.13) 

2.2.1.3 Properties of the UD-layer in perpendicular – parallel orientation  

Considering Figure 2.7 as the layer coordinate system, the transverse-longitudi-

nal shear modulus G⊥|| can be determined analogously to the modulus of elasticity E⊥ 

[9], as  

 

Figure 2.7. UD-layer coordinate system in the directions of its orthotropic axes  

Furthermore, the above equation was also improved by many authors using 

semi-empirical approaches. Förster [43], published a semi-empirical equation for the 

transverse longitudinal shear modulus as Eq. (2.15). 

𝐺⊥∥ = 𝐺𝑚
1 + 0.4 𝜑𝑓

0.5

(1 − 𝜑𝑓)
1.45

+
𝐺𝑚
𝐺𝑓⊥

𝜑𝑓

 
(2.15)  

 By using the rule of mixtures, the longitudinal and transverse expansions of the 

UD-layer material (i.e., Poisson's ratio in parallel and perpendicular orientations) is 

given by Eq. (2.16) considering the Poisson´s ratio of the fiber f and the matrix m 

[30,34]. 

𝐺⊥∥ = 𝐺𝑚
1

(1 − 𝜑𝑓) +
𝐺𝑚
𝐺𝑓⊥

𝜑𝑓

 
(2.14) 
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𝜐⊥∥ = 𝜑𝑓𝜐𝑓⊥∥ + (1 − 𝜑𝑓)𝜐𝑚 (2.16)  

It is important to note that the Poisson´s moduli in the perpendicular – parallel 

and, parallel – perpendicular directions are not independent [34]. Both are coupled by 

Eq. (2.17). 

𝜐⊥∥
𝐸⊥

=
𝜐∥⊥
𝐸∥

 (2.17) 

This work is focused on multi-laminate composites, which are still thin-walled 

materials having in average, less than 1.25 mm thickness. Therefore, the microme-

chanically derived basic elastic quantities obtained in this section are sufficient to de-

termine the elastic law for the plane state of stresses, i.e., when σ3 = 0. The influence 

of thermal, humidity (so-called hygrothermal effects) or contractions effects of the ma-

trix volume exceed the aims of this project and are not considered. 

2.2.2 Macromechanics 

Macromechanical approaches are used to study the behaviour of a multi-layer 

laminate with different orientations (Figure 2.5). Besides the direct experimental tests 

for determining the characteristic values of the laminate, another verified way consists 

of composing the material mathematically from materials laws of the individual layers 

knowing in advance the behaviour of each layer in different orientation regarding to the 

principal material directions [8,9,34,41].  

As a result, the UD-laminate is idealized macroscopically as a very thin homo-

geneous anisotropic element allowing the study as a plane stress state (σ3 = 0; addi-

tionally, the shear stresses τ23 = τ32 = 0).  

The following assumptions are required for the studies [8,41]: 

a. The fibre orientation is exact. 

b. Fibres and matrix behave as linearly elastic materials (i.e., superposition princi-

ple does apply). 

c. Deformation hypothesis according to Kirchhoff's plate theory (γ23 = γ32 = 0; and 

the normal vector to the layers remain normal after deformation). 

d. The layers are perfectly bonded. 

e. The displacements are small. 
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2.2.2.1 Classical lamination theory 

For studying the mechanics of a structural multi-laminate, the classical lamina-

tion theory (CLT) is implemented and consists of mechanical studies of stresses and 

deformations applied to a two-dimensional body problem. On the one hand, the stress-

strain behaviour of an individual sheet is analysed, and it is extended to the other 

sheets, considering the orientation angles of the fibres. On the other hand, the laminate 

stiffnesses are related to the strains and curvatures [8].  

2.2.2.1.1 Material elastic law for a UD-layer  

Considering an orthotropic layer material (there are three orthogonally oriented 

planes of symmetry), the stress and strains relations under plane stresses according 

to the principal material coordinates are given by Eq. (2.18) [8,41]. 

[

σ11

σ22

τ21

] = [

𝑄11 𝑄12 0

𝑄21 𝑄22 0

0 0 𝑄66

] . [

ε11

ε22

γ21

] (2.18) 

In which 
 

Qii =
𝐸𝑖𝑖

1 − 𝜐𝑖𝑗𝜐𝑗𝑖
 ⋯  𝑖 = 1, 2 (2.19) 

𝑄66 = 𝐺12 (2.20)  

Qij =
𝜐𝑗𝑖𝐸𝑖𝑖

1 − 𝜐𝑖𝑗𝜐𝑗𝑖
 ⋯  𝑖 = 1, 2 (2.21)  

{σ}1,2 = [Q]1,2. {ε}1,2 (2.22)  

Eq. (2.22) is the reduced form of Eq. (2.18) the term [Q] is also known as the 

“reduced” stiffness matrix of the material. Since there is no deformation restriction in 

the thickness direction in the plane stress state, the stiffness in the plane is then called 

reduced stiffness [8,34]. 

If the coordinates are not the principal coordinates in the plane of the layer, its 

necessary to convert one coordinate system as the local coordinate system (lamina) 

by 1-, 2- and 3-directions, into another global coordinate system defined by x-, y-, z-

direction, via a polar transformation which graphically is represented by the Mohr's 

circle [8,34]. Then, the stresses are defined by Eq. (2.23). The term [Q] denotes the 

transformed reduced stiffnesses. This case normally occurs when the individual UD-
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layers in a multi-laminate are arranged at different fibre angles α to those defined as 

principal for obtaining desired material properties (for example, required stiffnesses or 

strengths). To be able to convert stresses and strains from one coordinate system to 

other, the transformation relationships are obtained by using the Mohr's circle geome-

try, from which a transformation matrix is created. For further details about the trans-

formation graphical approach, see references [8,41]. 

[

σ𝑥

σ𝑦

τ𝑥𝑦

] =

[
 
 
 Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66]
 
 
 

. [

εx

εy

γxy

] (2.23) 

In which  

Q11 = 𝑄11 𝑐𝑜𝑠
4 𝛼 + 2(𝑄12 + 2𝑄66) 𝑠𝑖𝑛

2 𝛼 𝑐𝑜𝑠2 𝛼 + 𝑄22 𝑠𝑖𝑛
4 𝛼 (2.24) 

Q12 = 𝑄11 + 𝑄22  −  4𝑄66) 𝑠𝑖𝑛
2 𝛼 𝑐𝑜𝑠2 𝛼 + 𝑄12(𝑠𝑖𝑛

4 𝛼 + 𝑐𝑜𝑠4 𝛼) (2.25) 

Q22 = 𝑄11 𝑠𝑖𝑛
4 𝛼 + (𝑄12  −  2𝑄66) 𝑠𝑖𝑛

2 𝛼 𝑐𝑜𝑠2 𝛼 + 𝑄22 𝑐𝑜𝑠
4 𝛼 (2.26) 

Q16 = (𝑄11 +𝑄12  −  2𝑄66) sin 𝛼 𝑐𝑜𝑠
3 𝛼 + (𝑄12  −  𝑄22 + 2𝑄66) 𝑠𝑖𝑛

3 𝛼 cos 𝛼 (2.27) 

Q26 = (𝑄11 + 𝑄12  −  2𝑄66) 𝑠𝑖𝑛
3 𝛼 cos 𝛼 + (𝑄12  −  𝑄22 + 2𝑄66) sin 𝛼 𝑐𝑜𝑠

3 𝛼 (2.28) 

Q66 = (𝑄11 + 𝑄12  −  2𝑄12 −  2𝑄66) 𝑠𝑖𝑛
2 𝛼 𝑐𝑜𝑠2 𝛼 + 𝑄66(𝑠𝑖𝑛

4 𝛼 + 𝑐𝑜𝑠4 𝛼) (2.29) 

It is important to remark that the above cases considered the material as a single 

plane orthotropic layer in two-dimensions. The case for three-dimensions deals with 

nine independent constants (note the subscript of each [Q] terms above).  

2.2.2.1.2 Material elastic law for a multi-layer material 

Fibre composite structures typically require supporting loads in different direc-

tions, so different fibre directions are often used to optimize the material properties. 

The CLT is used to predict the mechanical behaviour of a multilayer material by build-

ing its material elasticity law from the elasticity laws of the individual layers. Addition-

ally, it determines the distortions and stresses of the individual layers through a layer-

by-layer stress analysis. As previously presented, the laminate is assembled by stack-

ing oriented laminas into a form of a plate or a shell. In contrast to the lamina, the 

laminate has a finite thickness and therefore a flexural rigidity. 
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Then, the laminate can be studied as wall elements, for the normal and shear 

loads applied (�̂�) over the laminate width 𝑏𝑙 as {�̂�} = �̂�/𝑏𝑙 (Figure 2.8.a); and as plate 

elements, for the moments applied (�̂�) over the laminate width {�̂�} = �̂�/𝑏𝑙 (Figure 

2.8.b) [34]. The superscript “   ̂” denotes the entire laminate.  

A reference plane of an n-layered laminate is selected to describe the strains 

(Figure 2.8.c). The laminate´s total thickness is t = 2Z0. 

(a) Forces (b) Moments (c) Reference plane 

  
 

Figure 2.8. Scheme of forces and moments acting on a laminate, and reference plane 

For each layer a force-moment equilibrium can be considered. Since the thick-

ness of the laminate is inhomogeneous, the integration of internal forces can only take 

place over the thickness of the respective individual layer. Then, the internal forces or 

stresses added up in layers, considering as reference scheme. For the laminate, the 

equilibrium of forces and moments are given in Eq. (2.30) and Eq. (2.31). 

{�̂�} = ∑∫ {𝜎}𝑘

𝑍𝑘

𝑍𝑘−1

∙ 𝑑𝑧

𝑛

𝑘=1

 (2.30)  

{�̂�} = ∑∫ {𝜎}𝑘

𝑍𝑘

𝑍𝑘−1

∙ 𝑧 ∙ 𝑑𝑧

𝑛

𝑘=1

 (2.31)  

 Then Eq. (2.22) is written as Eq. (2.32) for each “k” layer and employing the 

reduced transformed stiffness. 

{σ}𝑘 = [Q]𝑘.
{ε}𝑘 (2.32)  

The straining over the cross-section is resumed by Eq. (2.33), considering the 

distance 𝑧 to the reference plane (subscript “0”) and the curvature 𝜅. Its reduced form 

is shown in Eq. (2.34). Usually, laminates are laid-up symmetrically to the reference 
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plane to avoid undesired distortions, for example, due to internal hygrothermal 

stresses. 

{

ε̂𝑥(𝑧)
ε̂𝑦(𝑧)

𝛾𝑥𝑦(𝑧)
} = {

ε𝑥
ε𝑦
𝛾𝑥𝑦
}

0

+ 𝑧 ∙ {

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

}

0

 (2.33) 

{𝜀̂} = {𝜀}0 + 𝑧 ∙ {𝜅}0 (2.34)  

 Combining Eq. (2.32) and (2.34) into Eq. (2.30) and Eq. (2.31), the relation be-

tween forces and moments with the strains and stresses are given in Eq. (2.35) and 

Eq. (2.36). 

{�̂�} = ∑[Q]
𝑘
∙ [∫ {ε}0

𝑍𝑘

𝑍𝑘−1

∙ 𝑑𝑧 + ∫ {𝜅}0 ∙ 𝑧 ∙ 𝑑𝑧
𝑍𝑘

𝑍𝑘−1

]

𝑛

𝑘=1

 (2.35)  

{�̂�} = ∑[Q]
𝑘
∙ [∫ {ε}0

𝑍𝑘

𝑍𝑘−1

∙ 𝑑𝑧 + ∫ {𝜅}0 ∙ 𝑧
2 ∙ 𝑑𝑧

𝑍𝑘

𝑍𝑘−1

]

𝑛

𝑘=1

 (2.36)  

Then, the integrals for the forces and moments can be solved over the thickness 

of the individual layers, and thus, Eq. (2.35) and Eq. (2.36) can also be written as Eq. 

(2.37) and Eq. (2.38), respectively.  

{�̂�} = ∑[[Q]
𝑘
∙ (𝑍𝑘 − 𝑍𝑘−1) ∙ ε0 + [Q]𝑘 ∙

1

2
(𝑍𝑘

2 − 𝑍𝑘−1
2) ∙ 𝜅0]

𝑛

𝑘=1

 (2.37)  

{�̂�} = ∑[[Q]
𝑘
∙
1

2
(𝑍𝑘

2 − 𝑍𝑘−1
2) ∙ ε0 + [Q]𝑘 ∙

1

3
(𝑍𝑘

3 − 𝑍𝑘−1
3) ∙ 𝜅0]

𝑛

𝑘=1

 (2.38)  

 The above equations can be expressed as Eq. (2.39), which is known as the 

Material elastic law for a multi-layer material. 

{
 
 
 

 
 
 
�̂�𝑥
�̂�𝑦
�̂�𝑥𝑦 
 
�̂�𝑥

�̂�𝑦

�̂�𝑥𝑦}
 
 
 

 
 
 

=

[
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16

𝐴12 𝐴22 𝐴26

𝐴16 𝐴26 𝐴66 

𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66 
𝐵11 𝐵12 𝐵16

𝐵12 𝐵22 𝐵26

𝐵16 𝐵26 𝐵66

𝐷11 𝐷12 𝐷16

𝐷12 𝐷22 𝐷26

𝐷16 𝐷26 𝐷66]
 
 
 
 
 
 
 

∙

{
  
 

  
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦 
 
𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦}

  
 

  
 

0

 (2.39) 

The matrixes [A], [B] and [D] are written in a resumed form as Eq.(2.40). The 

[A]-matrix is also known as the extensional stiffness matrix, the [B]-matrix is known as 

the bending-extension coupling stiffnesses, and the [D]-matrix is called the bending 
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stiffness. [B] and [D]-matrix are considered when bending stresses also act on the 

laminate. 

[A, B, D] =∑[Q̅]ij,k ∙

n

k=1

[(tk), (tk (𝑧k −
tk
2
)) , (

tk
3

12
+ tk (𝑧k −

tk
2
)
2

)] (2.40)  

In this work, multilayer woven composite materials oriented at [0/90] ° are em-

ployed, and only UD-layers oriented parallel or perpendicular to the load direction are 

considered. Furthermore, the loading cases, only contemplate compression, tension, 

and shear in the plane, as it is analysed in subsequent chapters. Employing orthotropic 

materials means that there is no deformation-displacement coupling (that is [B] = 0); 

that is, the normal stresses σ11 or σ22 do not generate any distortion γ21. Likewise shear 

stresses τ21 do not generate any strain ε11 or ε22. This means that the respective polar 

transformation and the load cases evaluated according to CLT are only covered for the 

particular cases presented within this work. 

The behaviour of woven fabric composites is studied in a similar manner with 

CLT, although recent studies showed improved accuracy while calculating the laminate 

material properties [45–48]. The main discrepancy between the traditional CLT and the 

improved CLT models upon woven fabrics lies in the simplifications made on the first, 

that considers the woven material as two balanced plies (50-50) of unidirectional rein-

forcement separately, regardless of the woven waviness [9]. The curvature of the fibre 

during the weaving operation, and the fabric thickness have an evident effect on the 

elastic properties such as stiffness and strength of the final manufactured material (for 

example, by reducing them around 5 up to 15%, depending on the employed fabric 

type [49]). Also the gap between the yarns depicts a negative effect on the material 

properties, but less significative than the waviness [50]. If the fabrics present higher 

account of fibres filament per yarn (tow size), the waviness effect is larger and must 

be considered on the calculations. For the present work, the waviness effect is dis-

missed due to the thinness of the laminate and the woven material tow size (3k). 

2.2.2.1.3 Engineering constants of the multilayer laminate 

In practice, the so-called engineering constants are of technological interest for 

the materials design. For the case of FRP, that means to find the elastic moduli and 

Poisson's ratio of the entire laminate. The constants can be determined experimentally 
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under uniaxial loading, for example by tensile tests, or can be calculated directly from 

the materials´ law of elasticity by following CLT, only for normal stresses [34,51]. 

The law of elasticity of the multi-layer composite material while analysing the 

displacements field in a uniaxial loading case, is given by Eq. (2.41) obtained from Eq. 

(2.39) [34]. Solving Eq. (2.41) for the strain in x-direction, Eq. (2.42) is obtained. 

{�̂�} = [𝐴]{𝜀̂} (2.41)  

ε̂x = (𝐴
−1)11 ∙ �̂�𝑥 (2.42)  

ε̂ =
�̂�

�̂�
 (2.43)  

Disregarding the curvatures in Eq.(2.37) and combining it with Eq. (2.42), and 

employing the material law of elasticity (Hooke´s law) as Eq. (2.43), then the elastic 

modulus of the multi-layer composite in x-direction is obtained as Eq. (2.44). 

�̂�x =
1

(𝐴−1)11 ∙ 𝑡
 (2.44)  

 The other constants are also attainable with a similar procedure and are re-

sumed as follows.  

�̂�𝑦 =
1

(𝐴−1)11 ∙ 𝑡
 (2.45)  

�̂�𝑥𝑦 =
1

(𝐴−1)66 ∙ 𝑡
 

(2.46)  

�̂�𝑥𝑦 =
(𝐴−1)12
(𝐴−1)22

 
(2.47)  

�̂�𝑦𝑥 =
(𝐴−1)12
(𝐴−1)11

 (2.48)  

2.2.3 Failure cases 

Any component design analysis is normally performed by comparing stresses 

due to applied loads with the allowable strength of the material (strength failure) or the 

maximal critical load (instability failure). 

2.2.3.1 Failure due to material strength  

By multiaxial stress fields, a suitable failure theory must be selected for this 

comparison. Fibre-reinforced polymers are not isotropic and, thus many new failure 
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theories have been proposed for them. This section presents the main in-plane loading 

cases and summarizes the failure prediction in a UD-layer. Further information on this 

topic is found in the recommended bibliography [8,32,34,52,53]. 

2.2.3.1.1 Failure modes in a UD-layer 

The fibres and the matrix are the basic components of a UD-layer. Hence, a 

distinction is made between two basic types of failure: fibre breakage or inter-fibre fail-

ure (which is associated to a matrix failure or fibre–matrix interface failure), and each 

failure mode is specified in compressive, tensile or shear load cases [32,34]. Fibre and 

matrix failure are described by failure hypothesis. 

2.2.3.1.1.1  Fibre breakage 

Fibre breakage is caused almost exclusively by stresses parallel to the fibres, 

in tension or compression (Figure 2.9). The rupture strengths are different in tension 

and in compression, and different theories were developed for understanding this be-

haviour. Under tension (Figure 2.9.a) usually failure of fibre bundles occurs under very 

high loads. Commonly the fibres fail successively regarding the force distribution, and 

individual fractures can be clearly heard. In this case, the failure mode seems to be 

more ductile than brittle because the gradual failure effect, although a big rumble is 

normally heard after the material strength is reached and fails, denoting a high release 

of energy. One of the parameters to consider in the calculations is the basic strength 

of the UD-layer, or 𝑅∥
+ (also found as Xt). It is calculated as the only strength of the UD 

layer, since the fibres are the dominant component resisting tension 𝜎∥
+. In general, R∥

+ 

is not determined experimentally and the exact value is rarely needed, as another fail-

ure mode usually occurs firstly that requires less energy (for example, through a matrix 

failure or inter-fibre breakage at a lower load). Another difficulty is that experimental 

tests require a high clamping force that generally causes local damage. In general, R∥
+ 

is determined from the rule of mixtures (or normally they are obtained from catalogues) 

and is used as a preliminary design parameter [8,34]. On the other hand, under com-

pression loads (Figure 2.9.b) and assuming no global plate-buckling takes place, fibre 

failure normally occurs due to instability and not crushing. Thus, a micromechanical 

stability failure occurs, where the UD-layer present a maximum basic strength to com-

pression 𝑅∥
− and it does not denote a failure of the material in the strict sense. The 

matrix is the elastic support of the fibres and turns out to be insufficient to prevent the 
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fibres from buckling (case of a column on an elastic foundation model [8]). The first 

analytical description of shear buckling, and not the traditional Euler-buckling of col-

umns, assumes a perfectly aligned ideal fibre arrangement. However, there is always 

an imperfect structure in FRPs, and the following models were developed to account 

for microstructural imperfections, being the most important factor the average orienta-

tion deviation angle of the existing fibre with respect to the ideal. The first models were 

developed by Rosen [54], and later more accurate models were obtained by Argon 

[55], Budiansky [56] and, Budiansky and Fleck [57]. 

(a) (b) 

  

Figure 2.9. Fibre breakage schemes. (a) Parallel tensile load. (b) Parallel compression 

load [34] 

2.2.3.1.1.2  Inter-fibre failure 

The global failure of a material is generally expected to occur on the action plane 

of the stress. In inter-fibre failure, the effective action plane of stress does not coincide 

in all cases with the rupture plane since the UD-layer can support different loads in 

different directions. The stresses are relocated, and the failure happens gradually since 

the course of the breakage does not finally coincide with the direction of the load. The 

measured basic strength does not always correspond to the real strength under the 

active stresses, not necessarily conducting to a total failure of the laminate when reach-

ing it. Puck was one of the first to study this case, assuming that inter-fibre breaks in 

the UD-layer are brittle, proposing three failure modes that can arise depending on the 

applied load mode, either individually or combined (Figure 2.10) and, introducing a new 

term for effective plane failure, the effective plane breaking strength 𝑅𝐴 [34,52]. Inter-

fibre breaks are initiated by stresses in which forces run over the matrix or the fibre-

matrix interface. The following stresses are the failure driving force: the transverse 

tensile stress 𝜎⊥
+; the transverse compressive stress 𝜎⊥

−; transverse-transverse shear 

stress 𝜏⊥⊥; and the transverse-parallel shear stress 𝜏⊥∥. 
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(a) (b) (c) (d) 

   
 

Figure 2.10. Inter-fibre failure schemes. (a) Tensile load. (b) Compressive load. (c) 

Transverse shear load. (d) Transverse-parallel shear load [34]. 

Following reference [34], the case of Figure 2.10.a represents that the action 

plane of the transverse normal stress σ⊥
+ and the fracture plane are coincident. Thus, 

the basic strength R⊥
+ of the UD-layer is considered equal to the RA of the effective 

plane. If the load is applied transversely in compression σ⊥
− of Figure 2.10.b, the action 

plane of the stress and the plane of failure do not coincide, denoting a failure under an 

oblique shear with an evident angle in the direction of the load. In other words, the 

failure occurs due to shear. Thus, the basic strength 𝑅⊥
− and the effective plane strength 

RA do not coincide. Since a stress σ⊥
− cannot be the origin of a break in its plane of 

action, it is considered that the failure is produced by a stress τ⊥⊥ over the shear plane. 

In particular, the breakage does not occur at 45 °, as is expected for cases of shear 

stress, but there is also a transverse stress component that causes a frictional deflec-

tion mechanism and the failure plane angle is approximately 53 ° ([34]). Figure 2.10.c 

represents the case of transverse shear load τ⊥⊥. The plane of action of the load and 

that of the break do not coincide and the break occurs in an effective plane inclined at 

45 ° from the load plane as a result the shear-equivalent principal stress state. The last 

case is represented by Figure 2.10.d. In this failure mode, the shear stress τ⊥∥ is the 

failure cause. The break begins with microscopic cracks that run parallel to the fibres, 

in many cases surrounding them (fibres demand a higher energy for transverse frac-

ture), jumping through the transverse planes of the matrix. Finally, the cracks combine, 

and the structure fails but gradually. The cracks jump from plane to plane at an angle 

of 45 °. Failure occurs in the fracture plane that has the lower fracture strength, in this 

case, both effective action plane and fracture plane are the same and R⊥∥ = R⊥∥
A . 

2.2.3.1.2 Failure criterion of a UD-layer 

Every structure to be designed needs to fulfil certain dimensions required for 

load bearing. They can only be dimensioned by comparing the expected service load 
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to the load that can be tolerated. In the case of FRP laminates, the design parameters 

are the fibre volume fraction and thicknesses of the individual layers, as well as the 

fibre orientations given by the layers stacking sequence. Different criteria have been 

developed and modified for FRP laminates, primarily upon the state of stresses of a 

UD-layer and for inter-fibre stresses. Generally speaking, they are distinguished as:  

- type-of-failure criteria, an independent failure criterion is established for each 

of the failure types, that is, both as fibre breakage and inter-fibres criterion.  

- global failure criteria, where all the stress-strength comparisons in a UD-layer 

is described by a single mathematical equation obtained through empirical methods, 

linking the completely different types of break, fibre break and inter-fibre failure [34]. 

 Therefore, global failure criteria are phenomenological theories based in curve-

fitting analysis. The curve stress points are not necessarily connected by a continues 

curve, because of the discrepant material behaviour regarding the compression or ten-

sion response. There are many failure criteria for orthotropic materials, each designed 

to better predict the failure of the FRP materials based on its main components [8,9,32].  

2.2.3.1.2.1  Tensile stress 

One of the global failure criteria for design calculations is the Tsai-Hill [58,59] 

criterion interpreted as analogous to the Von Mises criterion, and it is briefly addressed 

as follows. For a plane stress state (σ3 = 0; and the shear stresses τ23 = τ32 = 0), a 

tensile stress in the 1-2-plane of a UD-layer is set, being the fibres oriented parallel to 

the 1-direction. The governing failure criterion is then given by Eq. (2.49) in terms of 

the material principal strengths.  

𝜎11
2

𝑅∥
+2
 −  

𝜎11𝜎22

𝑅∥
+2

+
𝜎22
2

𝑅⊥
+2
+
𝜏12
2

𝑅⊥∥
2 = 1 (2.49) 

𝜎11 = 𝜎𝑥 𝑐𝑜𝑠
2𝛼 (2.50) 

𝜎22 = 𝜎𝑥  𝑠𝑖𝑛
2𝛼 (2.51) 

𝜏12 = −𝜎𝑥  sin 𝛼 cos 𝛼 (2.52) 

The Tsai-Hill criterion is in very good agreement, for example, when analysing 

experimental data of E-glass fibres/epoxy matrix, and compared to other known criteria 

as the maximum-stress or maximum-strain criterion in Figure 2.11 [8,32]. Neverthe-

less, its accuracy depends on the behaviour of the material (either ductile or brittle) 
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and for other pair fibre-matrix components, other global failure criterions were devel-

oped by Hashin [60] or Tsai-Wu [61] for increased curve-fitting capability. 

 

Figure 2.11. Tsai-Hill failure criterion with uniaxial strength data of a glass fibre-rein-

forced epoxy composite. (Adapted from [32]) 

2.2.3.1.2.2  Compressive stress 

As presented in section 2.2.3.1.2, fibre-reinforced polymer composites under 

longitudinal compression loads may fail by inter-fibre breakage, either as a matrix fail-

ure or as a failure in the interphase matrix-fibre. In some cases, the FRP material may 

experiment failure as a localised buckling of the fibres (micro-buckling). Thereby, the 

rod-like structure of the fibres leads to a shear buckling failure rather than Euler´s flex-

ural buckling, because an insufficient shear rigidity of the matrix. By employing micro-

mechanical analyses, researchers studied micro-buckling under parallel-to-fibres axial 

compression loading (𝜎∥
−) of aligned-fibre composites, to attain the critical compressive 

peak stress (𝜎𝑐𝑟𝑖𝑡). Failure may occur when 𝜎∥
− > 𝜎𝑐𝑟𝑖𝑡. 

First analytical descriptions studied the mentioned critical load, assuming a per-

fectly aligned, ideal fibre arrangement. If the matrix behaves elastically, the localised 

buckling mode is called elastic micro-buckling. Applying buckling theory for columns in 

an elastic foundation, Rosen [54] studied two possible elastic micro-buckling modes: 

extension mode, due to extensional deformation in the matrix for low fibre volume con-

tent (𝜑𝑓 < 20%); and shear mode, due to shear deformation in the matrix. In failure 

prediction, it is more common to find shear deformation rather than extensional mode, 
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because most useful composites have more than 30% fibre volume content. The com-

pressive strengths of the exposed extension and shear modes are given by Eq. (2.53)  

and Eq. (2.54), respectively. 

𝜎crit = 2𝜑𝑓√
𝜑𝑓𝐸𝑚𝐸∥𝑓

3(1 − 𝜑𝑓)
 (2.53) 

𝜎crit =
𝐺𝑚

1 − 𝜑𝑓
= 𝐺𝑒𝑐 (2.54) 

Above equations depend upon the fibre volume content. Nevertheless, shear 

mode predicts a compressive strength lower than the extension mode. The other in-

volved parameters are the matrix shear and elastic modulus as 𝐺𝑚 and 𝐸𝑚 respec-

tively. Factor 𝐸∥𝑓, denotes the longitudinal elastic modulus of the fibres while factor 

𝐺𝑒𝑐 represents the effective shear modulus of the composite. However, Rosen’s mod-

els assumed perfect conditions when balancing the strain energy change to the work 

done by the external forces. Thus, failure prediction stated by the models shall differ 

from experimental data and theoretical values cannot be attained. The consequent 

developed models do contemplate imperfections upon the fibre arrangements, and 

other micro-buckling modes could be expected such as fibre-kinking. Rosen [54] as-

sumed fibre-kinking as a manner of elastic shear buckling, represented as an elastic 

bifurcation buckling phenomenon, and could also appear in originally straight fibres. 

However, other stress analysis dealt with an existing orientation deviation. Ar-

gon [55] stated that long fibres under compressive loads shall buckle due to a critical 

compressive load and proposed a rigid-perfectly plastic composite model (Eq. (2.55)), 

including a region of initial misalignment angle �̅� (previous to loading) and the longitu-

dinal shear strength 𝑘. Due to the fibre-misalignment, a compression-shear coupling 

occurs, and the compressive loads are in equilibrium of forces, although the fibre offset 

facilitates a disequilibrium of moments, and can only be balanced by an additional 

shear stress 𝜏⊥∥ [34]. When the shear component equals 𝑘 as 𝜏⊥∥
∗  = k, it produces a 

local instability favoured by the misalignment angle and followed by a shear collapse 

band. An increasing compressive stress induces a larger fibre misorientation. 

𝜎crit =
𝑘

�̅�
 (2.55) 

Budiansky [56], Budiansky and Fleck [57] verified the stress at which fibre-

kinking is initiated, joining both Rosen’s and Budiansky’s models, easily recognizable 
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when �̅� is defined by small or large values. The fibre-kinking model (Figure 2.12) is 

described by its parameters as the kinking angle β, the kinking width Wk, and the 

kinking rotation angle 𝜙.  

 

Figure 2.12. Budiansky´s model for fibre kinking 

Budiansky based the kinking behaviour of the fibres on an elastic-ideally plastic 

composite (Eq. (2.56)), including 𝛾⊥∥ as the shear yield strain of the composite. A con-

cluding remark of the authors emphasized that laminates made from carbon fibres im-

mersed into an epoxy matrix tend to fail by plastic kinking under compression loading. 

𝜎crit =
𝐺𝑒𝑐

1 +
�̅�
𝛾⊥∥

=
𝜏⊥∥
∗

𝛾⊥∥ + �̅�
 

(2.56) 

 The fibre misalignment angle �̅� in Eq. (2.56) varies randomly throughout the 

composite [62]. The fundamental association between fibre waviness and processing 

methods are not intensively established, albeit primary estimations have been imple-

mented with good experimental correlations. Following Fleck´s review [62], Jelf [63] 

estimated an average misalignment in the range 2 ° – 3 ° while studying CFRP tubes 

under compression and torsion loading, with a final failure by plastic micro-buckling. 

Likewise, Yurgartis [64] obtained experimentally the fibre misalignment in a unidirec-

tional carbon fibre-PEEK, resulting in fibres oriented within ± 3 ° and 1.9 ° of standard 

deviation. Furthermore, Lankford [65] studied carbide fibres on a ceramic matrix com-

posites under compressive loads, which failure denoted fibre-kinking. From calcula-

tions, a 4° fibre misalignment was issued. Due to the waviness inherent in the fabric 

manufacturing process (i.e., because of the effect of the weft upon the warp direction, 

see Chapter 2), woven carbon fibre cloth may have a higher fibre misalignment. Wil-

kinson [66] inserted brass wires into a T300/914 carbon-epoxy composite for weighting 

the effect of the waviness induced by the wire, starting from a minimum angle of 3 ° up 

to 17 °. The misalignment effect reduced in five times the compressive strength. More-

over, the missing parameters on Eq. (2.56) are the shear yield strain and its associated 
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shear strength. Different graphical methods are suggested by references [24,28] for 

attaining the last-mentioned factors (also called the Ramberg-Osgood parameters), 

from shear vs. strain response of the composite.  

In this work, Budiansky´s model will be employed for estimating the compressive 

strength of the CFRP laminates. The fibre misalignment value inferred in this work is 

estimated in the range of 2 ° – 5 °.  

2.2.3.2 Failure due to instability  

Slender or thin structures as rods or plates under compressive loads may fail by 

buckling, for example, when the applied compressive stress reaches the critical buck-

ing stress, and this is also smaller than the compressive strength of the structure´s 

base material. Therefore, stability failure must be taken into account also for slender 

structures made from FRP based materials, as rods and plate shapes proposed in this 

work. General insights are presented within this section, and more detailed descrip-

tions are given in the correspondent chapters. 

The example in Figure 2.13 serves to discuss the problem, presenting a typical 

case of buckling of a bar in an articulated and guided support under axial load. This 

case in its first mode is called the fundamental case of column buckling. Often, the 

buckling described in this section is called simply Euler buckling, who first investigated 

the buckling of a slender column.  

The differential equation of the deflection curve is represented by Eq. (2.57) 

[67,68]. The equation denotes a homogeneous and linear differential equation of sec-

ond order with constant coefficients.  

(a) (b) 

 
 

Figure 2.13. Example case for buckling topic introduction: (a) Buckling of a pinned-

end column. (b) Load-deflection diagram for a linearly elastic column. 
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𝑤(𝑥)´´ +
𝑃

𝐸𝐼
𝑤(𝑥) = 0 (2.57) 

  Then, introducing the following notation 

𝜇2 =
𝑃

𝐸𝐼
 (2.58) 

Rewriting Eq. (2.57) with above notation 

𝑤(𝑥)´´ + 𝜇2𝑤(𝑥) = 0 (2.59) 

The general solution of above equation is given by Eq. (2.60) 

𝑤(𝑥) = 𝐶1 sin 𝜇𝑥 + 𝐶2 cos 𝜇𝑥 (2.60) 

 To evaluate the constants of integration 𝐶1 and 𝐶2 of Eq. (2.60), the boundary 

conditions at the ends of the column are needed. For the case of Figure 2.13.a, the 

deflections are zero when 𝑥 = 0 and 𝑥 = 𝐿. Two cases are derived as solutions: Case 

1, 𝐶1 = 0, in which the column remains straight and the deflection 𝑤 = 0 (trivial solu-

tion). Case 2 gives the so-called buckling equation as sin 𝜇𝐿 = 0, which is satisfied 

when 𝜇𝐿 = 𝑛𝜋 (𝑛 = 1, 2, 3…). From case 2 solution, Eq. (2.61) is attained and gives 

the critical load for a column with pinned ends, being the lowest when 𝑛 = 1. 

𝑃 =
𝑛2𝜋2𝐸𝐼

𝐿2
 (2.61) 

 From above evaluation, the deflection curve is given by Eq. (2.62) 

𝑤(𝑥) = 𝐶1 sin
𝑛𝜋𝑥

𝐿
 (2.62) 

 When analysing the critical loads for columns with different support conditions, 

they can be associated to the critical load of a pinned-end column by introducing the  

concept of an effective length  𝐿𝑒 = 𝑘𝐿, in which 𝑘 is called the effective length factor. 

Then, Eq.(2.61) is written as Eq. (2.63). 

𝑃𝑐𝑟𝑖𝑡 =
𝜋2𝐸𝐼

(𝑘𝐿)2
 (2.63) 

 The different values of k vary according to the boundary conditions imposed to 

the column. This are briefly resumed in Figure 2.14.  

Moreover Figure 2.13.b denotes different states of the column while considering 

an ideal elastic column with large deflections (perfect system) and an elastic column 
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with imperfections such as small eccentricities (imperfect system). When the axial load 

𝑃 is of small values, between segment 𝑂𝐵̅̅ ̅̅ , the column is in a state of stable equilibrium. 

If the system is perfect, the column remains perfectly straight under axial compression. 

If the system is not perfect, the column will slightly bend from the onset of loading due 

to the imperfections. As 𝑃 reaches the critical load 𝑃𝑐𝑟𝑖𝑡 (point B), the column attains a 

neutral equilibrium, in which it may undergo small lateral deflections or may remain 

straight. When the load exceeds 𝑃𝑐𝑟𝑖𝑡 the state of the column is unstable and may 

undergo immediate collapse by buckling if the slightest disturbance is set. The imper-

fect system approaches the perfect system curve as an asymptote, and the larger the 

imperfections, the further the imperfect system curve moves to the right and away from 

the vertical. Remarkably, reaching the critical load does not mean that the structure 

will fail at that point. In fact,  the structure is able to bear higher loads until a larger 

deflection is reached, failing according to an over-critical load. However, the analytical 

approach as Eq. (2.63) only gives an estimation of the critical load, that is, when reach-

ing the neutral equilibrium, but no information above this value. 

(a)  Pinned-ends  (b)  Fixed-free (c)  Fixed-fixed (d)  Fixed-pinned 

𝑘 = 1 𝑘 = 2 𝑘 = 0.5 𝑘 = 0.699 

 
   

 

Figure 2.14. Different effective-length factors k for ideal columns [67] 

2.3 FRP manufacturing processes 

Material processing is the art and practice of transforming materials from one 

form to another. Composite materials processing involves the incorporation of two or 

more different components to form the final part. Composite parts subjected to signifi-

cant loads require continuous fibre reinforcements. In this case, these reinforcements 
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play the main role in the mechanical behaviour of the composite part and the function 

of the matrix is to avoid relative displacements of the fibres [69]. There are different 

techniques for processing various types of reinforcement and polymeric matrices. The 

pressures and temperatures involved in composites processing are significantly lower 

than those needed to process metallic parts. Consequently, polymer composites are 

transformed into near-final parts with simple and low-cost tools, in addition to reducing 

the post-processing manufacturing cost. The criteria for selecting the right processing 

method are based on factors such as the production rate, cost, mechanical require-

ments, size, and shape of the designed part. An example of the production series as a 

function of different manufacturing process is given by Figure 2.15. 

        

Figure 2.15. Ranking of composite part manufacturing [70] 

Part manufacturing of thermosetting reinforced polymers has four basic param-

eters: base materials; mould or support structures (and auxiliary accessories); heat or 

temperature; and pressure. Depending on the manufacturing process, the base mate-

rials are selected and placed by some method into the mould. Heat and pressure are 

then applied to transform the components into the final shape. The heat and pressure 

requirements are different for different material systems [71]. A wide range of compo-

site manufacturing processes have been developed over the years, depending on the 

manufacturing variables mentioned above. They could be partially summarized and 

divided as:  
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- Conventional methods, normally employing manual or partially automated lay-

ups such as bag-moulding processes (including autoclave [72]), compression 

moulding [73], filament winding [74], pultrusion [75] or liquid composite moulding 

processes LCM (as hand lay-up, resin transfer moulding RTM, or vacuum infu-

sion VI) [76–78]. The last represent the main manufacturing processes applied 

within this dissertation in which vacuum infusion stands-out. This point will be 

highlighted in this section.  

- Automated methods, they are in current focus because they increase the flexi-

bility of fibre placement process and allow the fabrication of more complex parts. 

Besides additive manufacturing AM with short and continuous fibres [79,80], 

three very popular are being used in industry as automated tape layup ATL, 

automated fibre placement AFP, and robotized filament winding FW  [70,81–

84]. However, their use is limited in terms of associated costs of the needed 

specialized machinery and constraints while fabricating complex components. 

The manufacture of moulds and tools is a critical matter in manufacturing tech-

nology. The mould transforms the raw material into a certain shape, as shown in Figure 

2.16 for the RTM example case. The quality and surface finishing of the processed 

part highly depends on the tolerances and manufacturing quality of the selected mould.  

 

Figure 2.16. Manufacturing moulds for a helicopter tail rotor made from CFRP [71] 

Essentially, four basic steps for all composite processing techniques are sum-

marized as: 
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1. Lay-up is the arrangement of fibres and layers of material arranged in a propor-

tion, order, and orientation according to the estimated stresses to which the 

component to be manufactured will be subjected.  

2. Impregnation is the stage in which resin and fibres are mixed to form a laminate. 

Its purpose is to ensure that the resin flows completely between the fibres and 

achieves good wetting of the fibres. The parameters influencing this stage are 

viscosity, surface tension and capillarity, which are affected by the pressure and 

temperature at which the impregnation is carried out. 

3. Consolidation is the step in which an intimate contact is created between sheets 

or layers of fibres, trying to remove the air trapped during processing and to 

increase the fibre volume fraction. Parts that do not achieve good consolidation 

will have trapped pores or voids, which will reduce the service load capacities 

of the manufactured parts. In turn, the fibres may undergo elastic deformation 

associated with resin flow, thus affecting their orientation, and leaving a state of 

residual stress in the part. 

4. Solidification is the final stage of processing. Pressure and temperature are 

maintained over time. The time and degree of polymerization (in thermoset res-

ins) will depend on the resin formulation and its curing kinetics. The shorter the 

solidification time, the higher the part production rate. 

Currently, more than 75% of commercially manufactured parts made of compo-

site polymers are produced from thermoset polymeric matrices such as epoxy, polyes-

ter and vinyl-ester resins [71]. Their advantages over thermoplastic matrices could be 

summarized as follows: 

-  the easier processing, since the initial state of the resin is in liquid state, 

- the fibres are easily impregnated with the resin,  

- continuous long-fibre, in which high performance composites can be attained,  

-  the processing temperature and pressure are lower, 

-  the elements required for processing as tooling, moulds, accessories, supplies, 

etc. are less expensive (apart from autoclave based FRP). 

As previously mentioned, LCM are a group of techniques for out-of-autoclave 

(OOA) polymer composites processing, that share some common characteristic such 

as moulds or support structures. In a first stage, the mould is filled with dry reinforce-

ment fibres, according to a certain stacking sequence (a preform is then assembled). 

In a second stage, the mould is closed and the preform is compressed inside the cavity, 
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increasing the fibre volume fraction. Then, a liquid resin is introduced into the mould to 

impregnate the preform. Once the mould is completely filled and the preform is fully 

saturated with resin, the cure stage begins, which is usually carried out by a suitable 

temperature cycle determined according to the polymer cure kinetics. Although LCM 

techniques have been well known since the 1970s, in recent years they are being used 

in mass production for the manufacture of all types of parts for automotive, transporta-

tion, marine, and aerospace vehicles [32]. This is largely due to the high capacity for 

mass production, the associated costs, the final part quality and the good mechanical 

properties achievable [85].  

Among the LCM techniques, the RTM allows obtaining near finished parts of 

good quality composite material that will be subjected to high stresses, for example in 

aeronautical parts such as rotors and structural parts [69]. This process is used for 

small to large parts in small to medium production volumes [71]. A variant of the RTM 

method is the vacuum infusion VI as shown in Figure 2.17 (some authors refer to VI 

as vacuum assisted resin transfer moulding VARTM technique). In this case, mould 

costs are reduced as the moulds have only one rigid face. In the VI process, the fibres 

are placed in a rigid-face mould which is previously coated with a suitable release 

agent. Once the fibres are placed in the mould, as part of the preform assembly stage, 

a fabric called “peel-ply” is placed over the preform. The functions of the peel ply are 

to provide air evacuation paths when vacuum is applied and to peel off the disposable 

materials that are placed over the laminate (vacuum and resin distribution hoses, resin 

distribution media, etc.). Then, another layer that is called “flow-media” it is placed over 

the peel-ply. This technique of placing flow-media and peel ply is commonly known as 

Seaman's Composite Resin Infusion Moulding, SCRIMP. The impregnation of the ibres 

is relatively slow when using vacuum infusion, because of the limited pressure gradient 

inside the mould driven just by the atmospherical pressure (≈ 1 bar). The flow-media 

is a high permeable fabric that facilitates the distribution of resin inside the mould, mit-

igating problems like premature gelation of the resin when processing large parts. A 

flexible plastic film, known as the vacuum bag, is then placed over the top of the layer’s 

assembly and it is sealed to the mould using a sealing tape. A vacuum pump is con-

nected to the vacuum lines (which also act as vents) and generates the negative pres-

sure necessary for the preform to be compacted, air to be evacuated and the resin to 

be infused. Once the vacuum is stablished, the catalysed resin is infused into the mould 
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through one or more infusion points. The infusion system is very simple and, addition-

ally, the mould with the flexible membrane allows a visual control of the filling and 

impregnation. Depending on the resin used, curing can take place in a temperature-

controlled chamber or at room temperature.  

 

Figure 2.17. VI technique basic scheme 

The VI process allows a medium-to-high fibre volume fraction, which implies 

good mechanical performance of the final part [71], but it should be considered that 

the maximum theoretical fibre compaction pressure is up to 1 bar. This means that the 

preform compaction behaviour will determine the maximum fibre volume fraction 

achievable. The present work adopted the VI technique for manufacturing sandwich 

panel components, such as cores and skins, and other laminates for the production of 

study specimens, as it consists in a very simple, versatile, and economical process, 

which allows good quality and high performance parts to be attained, appropriately as 

well for fast prototyping. 
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3 Sandwich construction: state of the art 

The principle of a sandwich structure consists on a pair of thin, rigid faces, a 

lightweight core with a defined thickness and an adhesive mean capable of load trans-

ferring to and from the core [86]. Sandwich structure´s concept is quite common in 

nature, such as the design of bird bones that feature a hollow inner cell structure (foam-

like) that supports the outer bone tissue, allowing the weight of the bird to be lighter, 

enabling the flight [87].  

Sandwich structures are very popular and can be found in numerous weight sen-

sitive applications. Due to their efficiency and versatility, satellite and aircraft industries 

use them as standard structures [16,17], and the concept currently has also been ex-

trapolated to ships [88], rail road’s industries [89], wind energy systems [90], construc-

tion [91], packaging [92], and lately they are being developed for motorsport and auto-

motive applications [93,94]. The advantages of using sandwich materials, in combina-

tion with the development of new base materials, currently focused on cellular cores, 

and the need for high performance weight-sensitive structures has enabled the contin-

uous increase in their demand [32,95]. 

In this chapter, the concept of the sandwich structure is presented and reviewed, 

its common load introduction and the likely failure modes, in which preliminary work 

has provided experience upon the study and development of manufacturing paths and 

failure modes upon sandwich structures based on FRP [96,97]. 

3.1 Sandwich structures concepts 

3.1.1 Lightweight construction 

The benefits of  weight reduction of transport vehicles have influenced the devel-

opment of new materials based on fibre-reinforced materials, so that they have high 

specific strength and stiffness per unit weight. Taking advantage of the anisotropy of 

FRP materials, it is possible to design each component according to the acting stresses 

[98]. Lightweight construction is defined by Hertel [99] as “the minimum amount of 

weight in an assembly that can only be achieved when each component requires only 

a minimum of material or contributes optimally to the minimum of a larger unit”. This 
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idea has gained more interest upon FRP based materials in recent years, being tar-

geted by numerous investigations not only for its benefits over high specific properties, 

but as means of cost reduction. Lightweight construction for specific loading cases 

requires an approach that covers three fundamental aspects: design – material – man-

ufacturing [100]. The combination of these three strategies brought a concept that con-

sists of the "hybridization" of materials. Ashby [1], defined hybrid materials as the com-

bination of two or more materials that allow characteristics not previously offered by 

their separate constituents. The concept also includes the use of a single component 

and empty spaces (membrane cellular concept). These materials allowed the expan-

sion of the design scope through the conception of new materials [101], being aimed 

by many researchers including the authors of this project [25,102–105]. Sandwich 

structures represent one of the main examples of hybrid materials. A historical review 

in sandwich structures is recommended as in following references [95,106–109].  

As presented previously, sandwich construction principle involves the layering of 

different materials, commonly having two rigid outer faces, a low-density core and, a 

bonding mean in such a configuration that provides high bending stiffness (Figure 3.1). 

There are three principal directions to which material properties of most honeycombs 

are referred; the width W, the length L and the transverse T directions [110].  

                      

Figure 3.1. Sandwich structure basic scheme 

Its configuration resembles an I-beam cross-section where the face sheets are 

comparable with the flanges, mostly bearing in-plane tensile and compression loads; 

while the core is like the web, typically bearing shear and out-of-plane compression 

loads. If the core thickness is increased, the faces are set even more apart and, thus, 

the Steiner component increases the second moment of area of the cross-section, ob-

taining a weight efficient bending structure  [86,99,110]. 
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Table 3.1 exhibits the effect of increasing core thickness upon the bending stiff-

ness: for example, by increasing core thickness three times, the flexural rigidity in-

creases over five times with a global weight increment of 6%.  

Table 3.1. Weight efficiency of sandwich structures while bending [111] 

Property    

Core thickness 0 t 3t 

Relative flexural 
stiffness 

1 7 37 

Relative flexural 
strength 

1 3.5 9.25 

Relative weight 1 1.03 1.06 

Many factors rule the choice of sandwich material components, although they 

may depend upon structure functionality, expected lifetime, availability and costs [112].  

On the one hand, the commonly used face materials are compressed in two 

main groups; metallic and non-metallic. Within the metallic ones, aluminium alloys, ti-

tanium alloys and steel alloys represent the most. The latter non-metallic face materials 

may include plywood, plastics, resin-impregnated paper or FRP among others. The 

FRP based faces has brought a significant impact upon sandwich structures, because 

of the higher specific properties and easier manufacturing paths than the metal coun-

terparts. The expected properties for a face sheet will depend on the functionality, but 

primarily are resumed as: high tensile and compressive stiffness and strength, surface 

finishing (fulfilling tolerances), environmental resistance and impact strength (the final 

impact properties of the sandwich structure is also depending on core energy absorb-

ing features) [110,113]. 

On the other hand, the employed materials components and geometries for the 

cores are even more complex and diverse. The function of the core is not only limited 

to stiffen the cross-section of the panel while separating the faces. As mentioned, the 

core also plays a fundamental role in the shear strength and compression loads. Fur-

thermore, the core must have sufficient Young´s modulus and shear modulus to main-

tain the distance between faces and to give them proper support in a way that they 

remain flat, avoiding local buckling effects such as wrinkling. Besides the mechanical 

properties already presented, other primary interest properties of sandwich cores rely 
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upon a very low density, thermal and acoustic insulation, although the features depend 

on the expected applications [110,113]. In this way, an on-going effort has been set to 

develop new types of sandwich cores capable of achieving many of the presented 

features. On the following section, the main sandwich core geometries and base ma-

terials found in the literature are reviewed.  

3.1.2 Periodic cellular materials  

Several approaches to the development of sandwich core materials have been 

set over the years, and most of them are based on cellular solids materials [114]. Gib-

son [115] defined cellular solids as an assembly of cells with solid edges or faces, 

packed together in way that they fill volume. Within this classification, examples can 

be found in nature such as wood, cork, bones, or sponges, combining an effectively 

high modulus and collapse strength with a very low density. Moreover, man-made en-

gineered cellular materials belong to this classification as well [116], being exploited in 

a variety of applications.  

The above classification comprises two main core type groups (1): stochastic 

cores, that may include open-cell and close-cell foams with different raw materials (e. 

g. polymers, metals or ceramics [115]) regarding to the intended implementation of the 

part [114,117]; and periodic cores, that introduce the concept of architected (or tai-

lored) materials [118]. The particularity of the periodic cores is that they are composed 

of repeating unit cells with cell diameters ranging from tens of micrometres to tens of 

millimetres [119]. Periodic cellular cores can also be divided in two sub-categories (2): 

prismatic cores, such as two-dimensional (2D) honeycomb [78,105], corrugated cores 

[120,121] or three-dimensional (3D) honeycomb [25,122]; and lattice structures 

[123,124].   

Some examples of the previous classification found in the literature are high-

lighted in Figure 3.2 [88,110,113,119,125]. The different core types primarily differ in 

terms of functionality, which may include different target functions such as load bearing 

capability, maximum tolerable weight, ease of manufacture, dimensional tolerances, 

costs, among others.  

 

 
(1) The traditional core type groups only cover balsa, foams, honeycombs, and corrugated cores [110] 
(2) The periodic cellular cores´ classification proposed may vary from other hierarchical descriptions 
[126]   
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Figure 3.2. Scheme of different core topologies 

Traditional sandwich cores are addressed in Figure 3.2 as follows: 

(a) Foams represent a solid on a macroscopic level, thus, sandwich manufacturing 

with them is commonly simple and economic (core shaping and face bonding). 

They offer high acoustical and thermal insulation, and good energy absorption 

by impact. They are widely use in marine applications.  

(b) 2D-honeycombs structures are composed of plates or sheets that form the 

edges of closed unit-cells, which are extruded along T-direction (thickness) and 

repeated in two dimensions to fill-up the space. The geometry is not limited to 

hexagons and, also triangular and square shapes are found. They are devel-

oped and employed mainly for aerospace purposes because of their high spe-

cific mechanical properties and versatility. 

(c) Corrugated cores are attained, for example if the 2D-honeycombs cores were 

rotated from one of the horizontal axes by 90°, obtaining a prismatic structure 

with open cells in one direction and closed in the other orthogonal directions. 

They represent advantages by fabricating large metal-based panels such as in 

railroad or marine industries.   

The search of even lighter core materials (ultra-lightweight cores [25,127,128]) 

and basic multifunctionality concepts such as open cell configuration in order to enable 

applications as heat transferring, shape morphing or foam-filling [119,129–131], re-

sulted in three of the following concepts presented in Figure 3.2: 

(a) Foams (b) 2D-honeycombs (c) Corrugated 

   

(d) 3D-honeycombs (e) Trusses (f) Micro-lattices 
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(d) 3D-honeycomb cores are manufactured having as basic idea the traditional 

square or triangular 2D-honeycomb. The core material sheets are machined 

according a defined pattern to have an open-cell scheme, which may have 

structural advantages while reaching a lowest weight design [25,132]. 

(e) Trusses (or lattices) are created from different arrangements of interconnected 

bars patterns (firstly to imitate foams features), in order to meet certain mechan-

ical and weight features, being competitive and even having better properties 

compared to traditional honeycombs [124,125]. 

(f) Micro-lattices are commonly manufactured by using metal wires, casting or 

more recently by 3D-printing. They present repetitive unit cells also in T-direc-

tion and a size of a few millimetres. They were developed for blast resisting 

applications but today they are extrapolated to overall engineering applications 

for filling space within 3D-printed structures [119,133,134]. 

Current steps toward new kind of ultra-lightweight cores are being set-up. Two 

reasons for such advances are proposed by Evans [135] as the discovery of new man-

ufacturing paths employing new technologies, or known methods but combined differ-

ently; and higher levels of basic knowledge about materials properties. To date, there 

are a vast number of techniques employed for the manufacture of lightweight cellular 

cores, from foam processing [136,137], batch [97] and continuous honeycomb fabrica-

tion techniques [138], slotting and bonding [139] and, more recently 3D printing tech-

niques of FRP polymers [140]. A comprehensive review of authors and the different 

manufacturing techniques can be found in the work of Karlsson [141], Wadley [119] 

and more recently Birman [112]. 

Within the 3D-honeycomb category, the work of Xiong et al. [132] stands out, 

having studied "egg-crate" and pyramidal structures (both open-cell core types). In that 

work, CFRP laminates were obtained by stacking prepregs, as an electronic engraving 

machine cut the laminates to the desired shape and through the interlocking method 

they were assembled and glued to obtain the 3D-honeycomb core. By studying the 

different material failure modes, the authors were able to identify the failure maps (later 

explained in this section) for a 3-point bending load, varying the support span of the 

samples. Since the skin-to-core bonding area was very low, most of the specimens 

exhibited debonding as main failure mode, limiting the maximum achievable failure 

load. For example, only a 3.2 kN bending load was reached for the best sample case 

at 220mm span, although theoretically more than 22kN was expected when avoiding 
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core debonding. Regarding FRP lattices, early work presented by Finnegan and Desh-

pande [22] is of notable relevance. The authors fabricated pyramidal sandwich cores 

based on CFRP laminates. The pyramidal geometry was obtained by waterjet cutting. 

A small slot in the back of the lattices allows the assembly using the snap-fit technique 

(likewise to the interlocking method). Since the bonding area was very small, a CNC 

milling machine performed small machining operations on the skins to generate a suit-

able undercut to support the lattice structure. Once assembled, core and faces were 

bonded with epoxy-based adhesive. Two different types of nodes were tested to eval-

uate the compressive strength. They achieved core relative densities �̅� in the range of 

0.01 – 0.1, with �̅�  =  𝜌𝑐/𝜌𝑠; where 𝜌𝑐 is the unit cell or core density and 𝜌𝑠 represents 

the density of the base material. The out-of-plane compressive strength obtained was 

in the range of 1 – 11 MPa, where the strength increases with an increasing relative 

density. When compared to most known materials, including aluminium lattices and, 

metallic and polymeric foams, with densities below 100 kgm-3, the pyramidal CFRP 

cores showed a better compressive strength. Furthermore, George [45] obtained py-

ramidal CFRP lattice cores as well, with another approach. The fabrication technique 

involved chemically soluble polymeric moulds, previously machined with a CNC milling 

machine to the desired geometry. Once the moulds were machined, braided dry car-

bon fibre was placed in the grooves and dry carbon fabrics were sewn together using 

aramid rovings. When the assembly was finished, CFRP sandwich panels were ob-

tained using vacuum infusion technique. Resin pockets were found after infusion, 

which can be removed mechanically, after removal of the foam support core, in another 

finishing step. Mechanical properties were evaluated for cores with and without support 

foam cores. Without the supporting foam, core densities of 44 kgm-3 were reached, 

attaining compressive and shear strengths of 1 MPa and 0.5 MPa respectively, mean-

ing that the compression strength of already known CFRP honeycomb cores perform 

better, although both cores exhibited comparable shear strengths.  

Further discussion among authors and research upon low density cores is ad-

dressed along this work. Nevertheless, it appears to be little research on CFRP based 

3D-honeycomb cores and non-laminate-based lattices, allowing the chance of explor-

ing new manufacturing paths and studying new materials properties. Thus, besides 

high mechanical performance, the target function in this dissertation is referred to attain 

a very low core density, while carrying-out different manufacturing approaches. At this 

point, the targeted core density is less than 48 kgm-3 and, thus, the designation ultra-
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lightweight (ULW) will be endorsed [24] (the latter term regarding the core density may 

vary among other authors [142,143]). Therefore, to obtain ULW cores, novel methods 

for manufacturing 3D-honeycombs and lattice cores have been developed successfully 

in this work and are addressed in the corresponding chapters. 

3.2 Failure modes 

3.2.1 Load introduction  

As outlined previously, a sandwich structure consists in a layered structure com-

prising thin face sheets, a low-density core, and a bonding mean that transfers load 

between outer and inner components: mostly, the thin faces carry the in-plane tensile 

and compressive loads; usually, the core bears out-of-plane compression and shear 

stresses; and the adhesive must transfer the shear loads between components and 

also must resist the out-of-plane tensile stresses, if any. An important feature of the 

core is that it must be stiff enough for stabilizing properly the face sheets, i. e. to main-

tain constant their distance and to hold them flat, avoiding face local buckling effects 

[86,113,144].  

Mechanical studies upon cellular core materials can be founded by means of 

standard methods of structural mechanics by analysing the unit repetitive cell behav-

iour [115]. The basic theory regarding sandwich structures load analyses and design 

features are comprised by Allen [113], Zenkert [110] and Vinson [145].  

3.2.2 Base calculations 

Basic formulations concerning sandwich beam theory are briefly summarized in 

this section [51,113]. Commonly, the mechanical behaviour of a sandwich structure is 

based on cases of basic quasi-static bending, compressive or shear loading. Bending 

theory is based on the basic bending Bernoulli approaches (i. e. flat cross sections 

remains perpendicular to the longitudinal axis of the beam while bending) but usually 

regarding the sandwich core stiffness, the Timoshenko beam theory (i. e. transverse 

shear deformations are allowed) is more suitable [146,147]. When using cellular cores, 

the compressive and shear loads response is usually studied by identifying a unit cell. 

Using basic mechanical approaches related to the unit cell geometry, it is possible to 

predict its behaviour and to extrapolate it to the entire core panel. In some cases, such 
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as foams, the unit cells geometries are too complex to characterize and some ap-

proaches employ semi-empirical solutions while introducing the parameter of core rel-

ative density �̅�, as previously described [23,115]. 

The cross-sectional properties and stress introduction are established according 

to Figure 3.3 sign convention and dimensions. 

 

Figure 3.3. Sign convention and dimensions used for calculations  [51,113] 

Some assumptions are made to ease the analyses of the sandwich panels load 

cases as:  

- the skins remain flat and parallel and present a linear elastic behaviour. 

- the core is homogeneous and of elastic behaviour 

3.2.2.1 Flexural rigidity 

Considering a symmetrical cross-section as in section A-A in Figure 3.3 and 

applying Steiner´s theorem according to the mid-plane and the centroid of the faces, 

the flexural rigidity D is then represented by Eq. (3.1). The terms 𝐸𝑓 and 𝐸𝑐 are the 

Young´s moduli of the faces and core, assuming both faces identical.  
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𝑏𝑤𝑡𝑓𝑑
2

2
  (3.1) 

Comparing each term in Eq. (3.1), some approximations are usually imple-

mented by comparing the contribution of core and faces rigidities (e. g. having a weak 

core 𝐸𝑓 << 𝐸𝑐; and thin faces 𝑡𝑓 << 𝐶) to the main flexural rigidity D [68,113]. Thus, the 

second term represents more weight to the expression and is used as simplification.  
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3.2.2.2  Stresses and strains 

The stresses in the faces and core due to a bending moment M are obtained by 

bending theory and given by Eq. (3.2) and Eq. (3.3) respectively. The maximum 

stresses are then obtained when z-parameter is equal to ± h / 2 or ± c / 2, respectively. 

𝜎𝑓 =
𝑀𝑥 𝑧
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2
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 For evaluating shear stresses due to a shear load T within a sandwich beam, it 

must be considered the rigidity contribution of each component of the cross-section. 

Shear stress distribution in the faces and the core are represented by Eq. (3.4) and 

Eq. (3.5) respectively. The maximum shear stresses are given when z-parameter is 

equal to zero and exhibits a parabolic distribution in the core [51,68,113]. 
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Figure 3.4. (Top). Bending stresses scheme. (Bottom). Shear stresses scheme. 

 Both bending and shear distribution are given schematically in Figure 3.4. As 

previously pointed out, when comparing core and faces, the core exhibits a smaller 

elastic modulus than the faces (𝐸𝑓 << 𝐸𝑐), therefore, only the bottom and top layers are 

considered as relevant for the bending stress studies. Moreover, commonly thin faces 

are employed for sandwich structures (𝑡𝑓 << 𝐶) and, thus, further simplifications are 
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allowed, such as constant bending stresses through face thicknesses despite having, 

in fact, a lineal stress distribution. Additionally, in the case of shear loading, the core 

bears the transverse loads as shear stresses, and a constant shear distribution through 

the core might be assumed, when flexural rigidity contribution of the core results insig-

nificant compared to face rigidities (𝐸𝑐 ≈ 0).  

In practice, in-plane compression upon sandwich panels is not very common, 

with exception of few cases, such in pressure-loaded nozzles in aircrafts [68]. Consid-

ering equal faces, the direct strain and stresses on the core and the faces due to an 

in-plane N load is given by Eq.(3.6), Eq. (3.7) and Eq. (3.8) respectively [51]. Factor 

𝜀𝑥0 represents the strain according to the neutral axis. The stress over the core is com-

monly very small compared to the faces, because faces present a larger in-plane elas-

tic modulus than the cores, and thus, faces carry mostly the normal in-plane loads. 

𝜀𝑥0 =
𝑁𝑥

2 𝐸𝑓𝑡𝑓 + 𝐸𝑐𝑐
 (3.6) 

𝜎𝑐 = 𝐸𝑐𝜀𝑥0 (3.7) 

𝜎𝑓 = 𝐸𝑓𝜀𝑥0 (3.8) 

Specific studies regarding other basic loading upon sandwich panels, such as 

out-of-plane compression and lap-shear response, are carried out in corresponding 

chapters, while analysing each sandwich core proposed, their unit-cells geometries 

and their elastic behaviour, as described at the beginning of this section. 

3.2.3 Failure modes 

The core and the faces are commonly studied individually for failure predictions 

of a complete sandwich structure. Here, failure of the bonding mean is also presented 

for studies. The failure modes (i.e., the mechanism or the way in which the material 

may break or collapse) depend upon a number of factors such as the base material 

combination and the design variables, for instance, the geometry of faces and core 

(i.e., including the unit cells under study), bonding strength and the way the loads are 

introduced, whether in-plane, out-of-plane, tensile, compression, shear, or flexural 

loads, individually or combined. More information over failure modes can be found in 

references [111,144]. The most common failure modes of sandwich panels are pre-

sented schematically in Figure 3.5 which, in turn, will be used in this work.  
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Figure 3.5. Sandwich failure modes schemes 

3.2.3.1 Face failure 

As presented in previous chapters, faces can be made from different base ma-

terials. In this this work, FRP faces are selected in way of combining high mechanical 

performances with low density. Hence, as acknowledged previously, there are many 

failure criteria for FRP laminates, albeit two can be identified on the large scale, either 

as strength or stiffness failure criteria [110,111,144]: 

- Maximum stress failure (in tensile or compression modes); also called as face 

yielding failure (Figure 3.5.a), it commonly occurs when one of the faces 

reaches the in-plane strength of the base material. The failure can appear due 

to a normal in-plane load, or bending loading, the latter considering thin faces, 

and a load distribution assumed as constant. Fibre reinforced polymers materi-

als fails differently in tension than in compression loading, and the latter is com-

monly the critical one. 

- Elastic failure. When the faces are submitted to in-plane loading, local plate 

buckling may occur. It is possible to identify two main sub-modes of skin buck-

ling failure, regarding the core unit cells: the first sub-mode is called face wrin-

kling (Figure 3.5.b), In this case, a skin buckling mode with a wavelength greater 

than the width of the unit cell of the core. Assuming the face as plate on a con-

tinuous elastic foundation (the core), a critical load is calculated. Then, faces 

can buckle either towards inside or towards outside the panel, depending on the 

core elastic modulus and the adhesive strength. The second main elastic failure 

mode on faces is called intercellular buckling (Figure 3.5.c), where the wave-

length of the buckling wrinkles is smaller than the size of the core unit cells. This 

(a) Face yielding (b) Intercellular buckling (c) Face wrinkling 

   

(d) Core shear (e) Core crushing (f) Debonding failure 
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may occur, since a large part of the face is unsupported by the core and buckling 

can occur in this region locally. A critical stress for intercellular buckling can be 

expressed from the simple elastic plate buckling theory, suiting the parameters 

to FRP materials. 

3.2.3.2 Core failure 

Cellular cores carry mostly shear loads (for example, due to a plate-shear or 

three-point bending cases) and out-of-plane compressive loads. Therefore, cores may 

fail either by two different modes as [110,111,144]: 

- Core shear (Figure 3.5.d). Neglecting the contribution of the skins, when shear 

stresses applied are higher than the shear strength of the core, the core fails in 

shear mode, typically denoting cracks inclined at 45° if the core is homogeneous 

under pure shear. When using FRP as base materials, the core shear strength 

depends upon the fibre orientation. 

- Core crushing (Figure 3.5.e). If a sandwich panel is loaded by an out-of-plane 

force, the core may fail under the indenter (or the body transmitting the load), 

when the out-of-plane compressive strength of the core is exceeded. Typically, 

this failure arises because of a stress concentration, and thus, depends directly 

on the loaded area. Different works have been presented to study the behaviour 

of "soft" cores (flexible in the out-of-plane direction) by considering high-order 

effects, to predict the non-linear behaviour and to achieve a more accurate es-

timation upon calculations [148,149]. These studies exceed the focus of this 

work, and they are not considered for analyses.  

3.2.3.3 Bonding failure 

When using rigid and periodic cellular cores, the bonding area between the core 

and the skins is usually very small. If snap-fit nodes are not used, the probability of 

failure due to core detachment from the skin is high and the debonding failure mode 

(Figure 3.5.f) has a high probability of occurrence (so called adhesion failure of the 

face/core layer). It is well known that the bonded region between the faces and core 

members must be large enough to resist the shear stresses within the discontinuity. 

The bonded area must include the menisci that originate from excess glue [150]. For 

studying of debonding, Xiong et al. [151] proposed two simple alternative ways: firstly, 

considering a unit cell, when the shear stresses in the bonded area exceed the bond 
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strength. On the other hand, an analysis that includes the total region of the core with 

the number of unit cells involved, resulting in an average strength value. The latter 

results ever since the bonded area within a unit cell is different from one another, due 

to the conditions of the manufacturing process which may cause local deformations of 

the bonding mean (i. e. greater local bonded surfaces). Besides adhesion failure, other 

kind of bonding breakage can be found in the literature and specific “peeling” tests 

identify and quantify the failure mode, such as delamination, cohesive failure within 

core member [152], and  consequently, exceed the aims of this work.  

3.2.4 Failure load surfaces 

Once the principal failure modes of a sandwich beam are defined, the govern 

failure modes can be easily identified as regions drawn in a 3D-chart named “failure 

load surfaces” by calculating failure loads for each individual failure mechanism and 

equating them for obtaining the failure regions´ limits. The failure mechanisms are plot-

ted as a function of three set variables related to: the loading case, the material prop-

erties such as the core and skin elastic moduli, and the design parameters such as the 

core and skin thicknesses or densities [51].  

 

Figure 3.6. Example of failure load surfaces scheme for a sandwich beam in three-

point bending. Adapted from [86] 

The work of Petras [86] is presented as example to schematize the attainable 

failure regions for a particular GFRP-skin and aramid core case (Figure 3.6). The fail-

ure modes designations have been added to the surfaces to ease their recognition. 
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Besides the failure load surfaces, other graphics can be also obtained by projecting 

these surfaces to the orthogonal planes. Among them, the failure mode maps (projec-

tion over xy-plane), and the main failure mechanism and failure loads regarding to core 

or skin parameters (projection over xz-plane or yz-plane) can be found as well. 
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4 Ultra-lightweight 3D-honeycomb cores 

As outlined in previous chapters, cellular cores for sandwich structures [1] are in 

focus of researchers and designers in a wide range of engineering applications. The 

aim is to employ a minimal number of raw materials for attaining strong and lightweight 

components using an open-cell topology (see section 3.1.2). Sandwich cores based 

on CFRP laminates have demonstrated to be competitive when their specific proper-

ties are compared to its metal counter parts either by out-of-plane compression and 

plate shear tests [105,139].  

In this chapter, a novel manufacturing method for obtaining 3D-honeycomb cores 

with densities below 48 kgm-3 [24], based on CFRP is explored. Three different carbon 

fibre cores are obtained using an interlocking method [153] from CFRP composite lam-

inates with different machined geometries. High specific compressive stiffness is the 

focus of the first approach. The scope of this chapter includes out-of-plane and plate 

shear studies. The core mechanical properties are evaluated by analytical models, 

supported by the finite element method. The failure modes for core strength predictions 

are also investigated, evaluating different failure mechanisms which derive in different 

failure loads, governed by buckling and maximum strength modes for compressive and 

shear studies, respectively. Subsequently, the predictions are in good correspondence 

with experiments. 

4.1 Literature review 

Sandwich cores with high specific strength require a design that focuses on max-

imum weight savings, while still exhibiting outstanding mechanical properties. In the 

recent years, manufacturers and researchers put the focus on very low weight honey-

combs cores with a square cell pattern (also known as square-honeycomb cores, Fig-

ure 4.1.a) according to different manufacturing strategies and base materials. As liter-

ature review, a selection of three of the most significant works on the topic is proposed 

in this section.  

One of the relevant investigation found in literature upon square-honeycombs 

cores is the work of Côté and Evans [153]. The authors used AISI 304 steel sheets as 

raw material for the fabrication of square-honeycomb cores. Studies in out-of-plane 
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compression showed that this kind of topology exhibit higher strength and modulus 

compared to metallic foams and aluminium hexagonal-honeycomb based structures, 

if one takes as example a same core relative density (�̅� = 0.03) and a core cell aspect 

ratio of H/L = 1. The measured peak compressive strength of the square-honeycombs 

was almost 30% higher than the aluminium counterparts used as reference cores. In 

other work [154] they found that square-honeycomb cores under out-of-plane com-

pression or in-plane shear loads are less susceptible to buckling than prismatic corru-

gated and diamond metallic cores. Additionally, Coté et al. [155] studied the effects of 

shear stresses on AISI 304 based square-honeycombs while varying H/L cell ratio and 

the core relative density. Under shear stresses, stainless steel cores of density �̅� = 

0.03, showed 2.5 times the shear strength of aluminium 5052 honeycomb counterpart.  

(a) Square-honeycomb core [153] (b) Egg-boxes cores [156] 

  

(c) Egg-honeycomb [122] (d) Pyramidal-honeycomb [122] 

 
 

Figure 4.1. Example of the core structures mentioned 

The continuous search for new base materials for increasing the specific strength 

and stiffness of sandwich structures led the designers to focus on CFRP composites. 

Consequently, CFRP-based sandwich cores are explored by Russel [21], who fabri-

cated square-honeycomb cores by slotting woven and laminated CFRP composites 

with different fibre orientations. The core relative densities are attained in the range of 

0.025 – 0.2, employing three different cell aspect ratios and varying the slotting relative 

position. Mechanical tests are performed comprising out-of-plane compressive and 

lap-shear tests. The observed maximum compressive strengths were 10 times higher 



  72                        4. Ultra-lightweight 3D-honeycomb cores 

 

than those of a square-honeycomb core made of AISI 304 steel for 𝜌𝑐 ≈ 250 kgm-3 and 

more than 100 times compared to cellular “egg-boxes” shape cores (Figure 4.1.b) 

made from aluminium with a core density of 𝜌𝑐 ≈ 100 kgm-3. Regarding single-lap shear 

tests, the CFRP square-honeycomb cores of relative densities of �̅� = 0.1 reached a 

nominal peak shear strength of about 3.8 MPa and 6.2 MPa for laminates [0/90] ° and 

woven [±45] ° CFRP-based materials, respectively. The authors confirmed that under 

shear stresses, the failure of laminates [0/90] ° are governed by the deformation of the 

matrix (evidenced also by the larger failure strain reached), while the fibres on woven 

[±45] ° samples dominate the shear response of the composite.  

Motivated by the wish for larger weight reductions in high-performance CFRP-

based sandwich panels, Xiong et al. [122] introduced the so-called 3D-honeycomb 

cores (refer to Chapter 3). As pointed out by the authors, the open-cell core topology 

allows multifunctional benefits as active cooling systems or line embedding, among 

other features. The employed laminate base materials were cross plies of T700/epoxy 

prepregs at [0/90] °. After finishing the CFRP-composite, a trapezoidal geometry is 

shaped in it with slots between unit-cells by means of an electronic engraving machine. 

Additionally, by varying the stacking orientation of the CFRP-sheet by 45 ° during the 

snap-fit assembly step, two different grid architectures are accomplished as: an egg-

honeycomb grid (Figure 4.1.c) with core relative densities of �̅� = 0.03 and �̅� = 0.06; 

and a pyramidal-honeycomb grid (Figure 4.1.d) of densities  �̅� = 0.06 and �̅� = 0.12. 

Studies upon out-of-plane compressive loading are carried-out, showing core com-

pressive strengths of about 3 MPa and 5 MPa for the egg-honeycomb grid, and 6.5 

and 11 MPa for the pyramidal-honeycomb cores. The main discrepancy between the 

proposed cores is stablished by observing the failure modes. The egg-honeycomb as-

sembly presented fewer crossing slot-points along the CFRP-laminate, and the stability 

over the plate was less compared to the pyramidal-honeycomb. The latter cores were 

dominated by core crushing failure mode. In another study, Xiong et al. [132] evaluated 

the different failure modes under three-point bending of sandwich panels employing 

the mentioned egg and pyramidal-honeycomb cores. The authors predicted and later 

observed that the sandwich panels are susceptible to debonding at the core-face in-

terface, due to the reduced bonded area at the core-face contact points, and vulnerable 

to face wrinkling, due to the relatively large width of unit-cells (≈ 45 mm) and the re-

sulting lack of face sheet support provided by the core.  
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Current research emphases on the development of cellular cores of relative core 

densities in the range of �̅� = 0.025 to 0.1. As discussed previously in Chapter 3, in 

terms of nominal core density, cores with a density less than 𝜌𝑐 = 48 kgm-3 (�̅� ≈ 0.035) 

may be considered as an ultra-lightweight material (ULW) [24]. The aim of this chapter 

is to study ULW 3D-honeycomb cores proposed as an alternative for commercial sand-

wich cores. The core´s competitiveness will be evaluated in Chapter 7. 

The outline of this chapter is as follows: 

1. A fabrication method based on the interlocking technique will be explored, detail-

ing the manufacturing route to obtain ULW CFRP square honeycombs.  

2. Analytical models supported by the finite element method of the core response 

to out-of-plane compression and plate-shear are developed for obtaining core 

elastic stiffnesses and strengths along with the predicted failure modes.  

3. The core response is measured and described from experimental tests in com-

pression and shear loading.  

4. The results are discussed, and the theoretical models obtained are compared 

with the experimental data.  

4.2 Design and construction 

Employing different material processing techniques, square-honeycomb cores 

are fabricated. The base material employed is a woven CFRP plate obtained by vac-

uum infusion (VI). Using the computerised water jet cutting (WJC) technique, CFRP 

plates with three different core geometries and slots are machined. Employing the in-

terlocking method [153], the CFRP sheets are assembled into a square pattern and 

bonded together with epoxy resin. The result is a hybrid structure [101] with large in-

ternal holes and densities below 48 kgm-3.  

4.2.1 Materials 

 One aim of this work is to obtain a very low density of the resulting cores. Thus, 

knowing in advance the density of the parent material is crucial for beginning with the 

first drafts of the design. The selected material processing technique for obtained the 

CFRP plate is the VI. It does not allow any thickness control in the same way as RTM 

does, as the fibre compaction pressure is limited by atmospheric pressure. Thus, the 

theoretical maximum achievable pressure is 1 atm. Chen et al. [157] studied the fibre 
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compaction behaviour by RTM and determined the relationships between fibre volume 

content achieved, compression force and preform thickness reduction which allows the 

resin permeability to be evaluated as a function of applied pressure. Besides dry-fibre 

compaction analyses, scalable coupons also represent in engineering a simple manner 

to obtain in advance an accurate thickness overview of the plate to be manufactured. 

Hence, as a preliminary study for this work, different small coupons are assembled as 

two, three, four and five layers of base material fabric. After carrying-out the VI tech-

nique, the coupons thicknesses and weights are measured. 

Therefore, the selected preform consisted of three layers of plain woven [0/90] ° 

Torayca T300-3k carbon fibre fabric. Additionally, it is interesting to remark that the 

susceptibility to delamination caused by machining processes is lightly reduced when 

woven laminates are employed, instead of unidirectional fibres [158]. The polymeric 

matrix applied is a DGEBA (DER 383, Dow Chemicals), and glycidyl aliphatic ether 

(Novarchem S.A.) is used as an epoxy reactive diluent, to decrease the resin viscosity 

and facilitate the vacuum infusion process. A cycloaliphatic amine (Air Products and 

Chemicals Inc.) is employed as hardener. Table 4.1 shows the properties of the fibre 

reinforcement and the epoxy resin selected.  

Table 4.1. Carbon fibres and polymeric matrix main properties 

T300 – Cloth 

Density 
 
(gcm-3) 

Filament 
diameter 
(μm) 

Tow size 
number 

Textile 
weight 
(gm-2) 

Tensile 
strength 
(GPa) 

Tensile 
modulus 
(GPa) 

Fracture 
strain 
(%) 

1.8 7 3k 198 3.53 230 1.5 

Polymeric matrix 

Epoxide 
equiv. 
(geq-1) 

Epoxide 
percent. 
(%) 

Density 
at 298 K 
(gcm-3) 

Viscosity 
at 298 K 
(Pa s) 

Tensile 
strength 
(MPa) 

Tensile 
modulus 
(GPa) 

Fracture 
strain 
(%) 

176 - 183 23 – 24 1.14 0.57 - 0.6 65 - 80 2.65 2 - 2.5 

As a result, a CFRP composite plate with an average thickness of t = 0.65 ± 0.05 

mm and a mean density in the range of 1300-1350 kgm-3 (lab measured), and an av-

erage fibre volume content of 50.8%. The base material density is predicted of 1.475 

gcm-3 by theory (see Annex C for further details). The difference between the values 

attained and the predictions is attributed to imperfections such as potential voids as a 

result of entrapped gas during the manufacturing process.  
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The base material elastic properties and its compressive strength are previously 

obtained based on the classical laminate theory and the Budiansky´s model, respec-

tively, and are shown in Table 4.2. Details for the calculations are given in Annex B. 

Note that properties are established regarding the fibre-load orientations, consid-

ering Figure 4.7 as coordinate references, observing that unit cells are symmetrical. In 

this case, the local x, y, z-directions are parallel to the global 1, 2, 3-directions. 

Table 4.2. Theoretical elastic properties of the woven composite material T300/epoxy. 

Composite  
elastic  
modulus  
𝐸3𝑠 = 𝐸1𝑠 

(GPa) 

Composite  
elastic 
modulus  
𝐺13𝑠   

(GPa) 

Composite 
Poisson´s 
modulus 
𝜐13𝑠 = 𝜐31𝑠  

(--) 

Fiber  
volume 
fraction 
𝜑𝑓 

(%) 

Composite 
compressive 
strength 
𝜎3𝑠
−  = 𝜎1𝑠

−  

(MPa) 

Composite 
shear 
strength 
𝜏13𝑠 

(MPa) 

62.6 3.56 0.03 50.8 482.3 110 

Note: subscript s represents the parent material 

4.2.2 Square-honeycomb design 

The proposal of this chapter consists of the design of ULW hybrid structures 

with high strength and stiffness-to-weight ratio in an out-of-plane load case. This fea-

ture is achieved by orienting the fibres parallel to the direction of the loading (3-direc-

tion, Figure 4.7).  

A further aspect to be attained is a hollow structure by virtue of the opened cell 

characteristic, not only for weight savings but also for allowing potential multifunctional 

features (e.g. heat transfer, foam filling capabilities and its benefits such as isolation or 

impact response, damping properties, shape morphing, among others [129,159,160]). 

The hollow geometry is proposed according to three hollow designs (Figure 4.2. 

a-b) that deal with the loading solicitation. The catenary-like shapes have been used 

in civil engineering or architecture when high compressive properties are required to 

fulfil the mechanical demands. Ideally, catenary curves are based on inverted arches, 

being the locus of the points where the horizontal tensions are compensated and for 

that reason has no lateral stresses, and they not need lateral compensations [161]. 
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(a) Catenary-like (large) (b) Catenary-like (small) 

  

(c) Rectangular array (d) Full walled 

  

Figure 4.2. Core sheet patterns proposed 

Moreover, the rectangular arrays (Figure 4.2.c) are first thought as cavities with 

central struts, looking forward to a more restricted system in which the load capability 

is enhanced by the horizontal linking (stud-link chain-like). To contrast the performance 

of the selected geometries, a core made from full-walled base material is taken as 

reference (Figure 4.2.d). A square-honeycomb core pattern is fabricated, due to its 

versatility and ease of manufacturing, being a competitive structure already proven 

compared to known sandwich cores [105,153]. The machined slotted pattern only is 

required over one side of the sheet, due to pattern symmetry to the horizontal mid-

plane. During the sheet assembly step, one long edge of a sheet must be right side 

up, while the long edge from another sheet must be upside down. An additional condi-

tion that is expected in this proposal, contemplates the core symmetry along the xy-

plane, i.e., considering core geometry, the number of sheets employed are equal and 

equidistant regarding the L and W directions. Thus, the unit cells are symmetric as L = 

W (Figure 4.3). A higher number of cross-linked composite sheets (i.e., unit cells) en-

hance the out-of-plane loading strength and stiffness of the core, along with the bond-

ing surface. 

In this chapter, unit cells dimensions are of a size of 20 by 20 mm for the ma-

chined core sheets and 50 by 50 mm for the cores without cavities. The unit cells mean 

dimensions and core patterns are schematically given in Figure 4.3 and specified in 

Table 4.3. The relative density of the cores is calculated either: by the areas occupied 

by material within a CFRP sheet and multiplying it by its average thickness and the 

number of sheets; or in an analogous manner, by calculating the amount of material 

within a unit cell (see section 4.2.2.1). The densities of the core and unit cells are 
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equivalent as 𝜌𝑐𝑜𝑟𝑒 = 𝜌𝑐𝑒𝑙𝑙 = 𝜌𝑐. The resulting densities are less than 48 kgm-3, later 

verified by lab measurements (see Annex C). 

(a) Sketch example of a unit-cell 

 

(b) Cell design 1: catenary-like (large) (c) Cell design 2: catenary-like (small) 

  

(d) Cell design 3: rectangular array (e) Reference cell: full walled 

  

Figure 4.3. Scheme of unit repetitive cell patterns and main geometry parameters 

Table 4.3. Unit-cells mean dimensions and core densities employed. 

Pattern 
H L = W t a b 𝝆𝒄

* 𝝆𝒄
** 

(mm) (mm) (mm) (mm) (mm) (kgm-3) (kgm-3) 

Design 1 25.40 20 0.65 21.40 13.09 47.40 47.64 

Design 2  25.40 20 0.65 21.40 4.10 47.77 46.06 

Design 3  25.40 20 0.65 8.7 13.22 46.01 46.65 

Reference 25.40 50 0.65 -- -- 37.80 38.67 

* Theoretical value. ** Lab-measured 
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4.2.2.1 Core relative density estimation  

The calculation of the relative density of a square-honeycomb core is based on 

the main parameters that describe unit cells geometries (Figure 4.3) by using simple 

geometric considerations. Here, the core relative density of the full-walled core pattern 

is described. 

On the one hand, the average area As occupied by the base material within a 

square unit cell as L = W is given by Eq. (4.1). The unit cell area Acell is shown as Eq. 

(4.2) and considering a relative area Arel ≤ 1 as the ratio As /Acell, Eq. (4.3) is attained. 

𝐴𝑠 = 𝑡𝐿 + 𝑡𝑊 = 2𝑡𝐿 (4.1) 

𝐴𝑐𝑒𝑙𝑙 = 𝐿𝑊 = 𝐿2 (4.2) 

𝐴𝑟𝑒𝑙 =
𝐴𝑠
𝐴𝑐𝑒𝑙𝑙

=
2𝑡

𝐿
 (4.3) 

On the other hand, considering the general expression of the density of the base 

material 𝜌𝑠 as the mass of the base material ms within a unit cell over the base material 

volume as 

𝜌𝑠 =
𝑚𝑠

𝐴𝑠𝐻
=

𝑚𝑠

2𝑡𝐿𝐻
 (4.4) 

 The density of the unit cell core, ergo the density of the core sample, is defined 

by Eq. (4.5), as the ratio of the unit-cell core mass mcell and the unit cell volume Vcell. 

𝜌𝑐 =
𝑚𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
=
𝑚𝑐𝑒𝑙𝑙

𝐿2𝐻
 (4.5) 

 The relative density �̅� of a square unit-cell honeycomb is obtained by Eq. (4.6), 

combining both Eq. (4.4) and Eq. (4.5), where 𝜌𝑐/𝜌𝑠 ≤ 1. The unit-cell mass mcell and 

the base material mass within a unit-cell ms are equal in magnitude. 

�̅� =
𝜌𝑐
𝜌𝑠
=
2𝑡

𝐿
= 𝐴𝑟𝑒𝑙 (4.6) 

Therefore, the relative density of a full-walled square-honeycomb core can be 

defined either by the relative area of the unit cell as Eq. (4.3) or by employing the ratio 

of the base material and core densities as Eq. (4.6). 

The case of machined 3D-honeycomb cores is addressed in a similar manner, 

but calculating the area occupied by the base material (see Annex C for further details). 

From CAD models these values are also easily attained.  



4. Ultra-lightweight 3D-honeycomb cores                                                                79 

 

4.2.3 Manufacturing method 

The route for manufacturing the sandwich cores is resumed as a combination 

of several known material processing methods, comprising the vacuum infusion (VI) 

technic (Figure 4.4.a), the computerized water-jet cutting phase (WJC) (Figure 4.4.b) 

and the slotting/interlocking method as final step for the core assembly (Figure 4.4.c). 

The last step contemplates the bonding between faces and core with an epoxydic glu-

ing mean (Figure 4.4.d), to obtain a stabilized core structure. The fabrication procedure 

is described in further details in this section.  

There are different ways to perform resin infusion in VI according to the dimen-

sions of the plate, to fully impregnate all the fibres and to achieve a homogeneous 

thickness along the plate. Correia et al. [162] and Yenilmez [163] studied the thickness 

of the part to be manufactured at different times during the material processing stage 

as: before, during and after resin infusion. Prior to infusion and during the vacuum 

stage, the mould is ideally subjected to a pressure of 1 bar, compressed by the vacuum 

film. During the infusion, there is a resin flow front that counteracts the pressure exerted 

by the bag, as the resin makes its way through the preform, impregnating the fibres 

[164]. If the plate is of considerable dimensions (> 500 mm), the effect of thickness 

variation due to the pressure difference within the preform is much more evident, as 

mould filling times are extended. By placing several infusion points (inlets) or changing 

the infusion method, e.g., from linear to radial, it is possible to mitigate the effect of 

plate thickness variation, since distances travelled by the resin are shortened, giving a 

regular pressure distribution, and at the same time reducing processing times. 

In this work, the dry assembly comprises three plain woven layers of carbon 

fibres fabrics, over a wax coated plain substrate to ease the releasing. The vacuum 

infusion transfer moulding set-up is arranged as a central-radial infusion, with lateral 

vacuum-lines, targeting a homogeneous final thickness of the CFRP plate after the 

infusion and curing stages (Figure 4.4.a). The resin is infused at room temperature. 

Once completed the fill, the resin line is closed, and after a few minutes, the vacuum 

line is closed, in a way that the pressure over the entire plate is homogenised. The 

mould is then put into an air circulating oven at 120 °C and cured for 2h. After curing 

and realising the part, the CFRP plate is cut into rectangular sheets with the desired 

geometries patterns employing the WJC method (Figure 4.4.b). The machined slots 

had a final nominal width of 0.65 mm. The clearance between sheet thickness and slot 
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width was less than ±0.05mm, which gives a suitable tight fit while implementing the 

slotting/interlocking method (Figure 4.4.c). A machined support plate is used to ensure 

the correct position of the CFRP sheets (the assembly-in-position method resembles 

reference [151]), while cross-slots are bonded together using the same base resin em-

ployed, attaining the desired square-honeycomb pattern (Figure 4.4.c). Later, the cores 

are put into a cabinet oven at 140 °C for 24 h. As final step, CFRP top and bottom 

faces are attached to the cores using a 2-component epoxy adhesive (UHU plus End-

fest 300®), to obtain stabilized core samples. Figure 4.4.d shows schematically core 

and face assembly with an open top-face for a better visualization of the unit cells. 

(a) Vacuum infusion setup (b) WJC step 

 

 

(c) Slotting-interlocking method (d) Core-face assembly 

 

 

Figure 4.4. The manufacturing route for obtaining ULW square honeycomb cores 

Rectangular samples are cut from large core assemblies to obtain compression 

and shear test samples. Compression samples are made of a size of 100 by 100 mm 

and a height of 25.4 mm, containing an array of 4 x 4 and 1 x 1 unit cells, with 5 x 5 

and 2 x 2 struts for the proposed cores and reference core, respectively (Figure 4.5). 



4. Ultra-lightweight 3D-honeycomb cores                                                                81 

 

(a) Proposed geometries (b) Reference core 

 

Figure 4.5. Photographs of core compression samples obtained 

Shear samples are tailored to maximize pure shear stresses along the core, and 

sample sizes of 200 by 100 mm and 25.4 mm in height are employed. The cells ar-

rangements are of 8 x 4 and 2 x 1 unit cells, with 10 x 5 and 4 x 2 struts for the proposed 

and reference cores, respectively (Figure 4.6).  

(a) Reference core (b) Proposed machined geometries 

   

Figure 4.6. Photographs of core shear samples obtained. 

4.3 Core out-of-plane compression 

By analysing a single strut response to out-of-plane loading (Figure 4.7.a), the 

compressive stiffness and the compressive strength of the proposed square-honey-

comb cores are estimated. The strut is defined as of a volume equal to the unit-cell 

volume L x W x H, and thus, will be identified as a representative cell element used for 

calculations. A nominal t = 0.65 mm is considered as the core wall thickness in all 

cases. Figure 4.7.b represents a view from top of the load case and the selected rep-

resentative cell element, taking advantage of the symmetry of the model. 

 On one hand, analytical models are carried out by means of simple mechanical 

models, geometrical considerations, and displacements studies. A generic nominal 
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compressive load P is introduced through a top-plate and distributed along the core 

cells (Figure 4.8). The load is then balanced by a bottom bearing plate. The cores are 

considered perfectly bonded to the skins, and consequently, fixed border conditions 

are assumed.  

(a) (b) 

  

Figure 4.7. (a) A schematic compressive loading case render. (b) A top-view render 

with a schematic strut area used for calculations 

(a) (b) 

  

Figure 4.8. Sketches of models for calculation. (a) Representative cell element loaded. 

(b) Representative cell element front view: before and after straining 

On the other hand, numerical models are developed by using the software FE-

MAP™ 10.3 with NX™ Nastran® [29]. The simulations are carried out to have a further 

overview of the main structures behaviour and to validate the theoretical analyses. 

Finite element analyses combined with analytical calculations are used for indirectly 

predicting the elastic modulus, validated later by experimental tests. The evaluation of 

the square-honeycomb cores is resumed into a simplified case, employing unit cell 
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elements (Figure 4.3), which dimensions are shown in Table 4.3. The base material 

laminate was considered as an orthotropic material with an average thickness of t = 

0.65 mm. The base material elastic properties are previously obtained based on clas-

sical laminate theory (see Chapter 2) and are shown in Table 4.2. 

4.3.1 Compressive stiffness 

A honeycomb core works as spacer between the face sheets. When the panel 

is loaded in compression by means of compressive plates (Figure 4.7.a), compression 

loads are transferred from the skins to the core. Assuming a linear behaviour and small 

displacements, the vertical displacement δ of the cell element assembly due to a re-

sulting nominal load P is analysed for estimating the core compressive stiffness (Figure 

4.8). 

4.3.1.1 Analytical model 

For determining the elastic modulus of the core 𝐸𝑐, a representative cell element 

as given in Figure 4.8.b is taking into account. The compressive load P is common to 

the cell element, and thus, its base material. Considering that the length L and the 

width W are the same (L = W), the compressive load P is written as Eq. (4.7) multiplying 

the applied stress over the cell element 𝜎𝑐 and the cell area given by 𝐴𝑐𝑒𝑙𝑙 in Eq.(4.2). 

𝑃 = 𝜎𝑐𝐿
2 (4.7) 

The stress over the base material 𝜎𝑠 is attained as Eq.(4.8), incorporating the 

definitions of 𝐴𝑠 (Eq. (4.1)), P (Eq.(4.7)) and �̅� (Eq. (4.6)). 

𝜎𝑠 =
𝑃

𝐴𝑠
=
𝜎𝑐𝐿

2

2𝑡𝐿
= 𝜎𝑐

𝐿

2𝑡
= 𝜎𝑐

1

�̅�
 (4.8) 

The experienced compressive strain 𝜀 over the unit cell and base material are 

the same because loads and the vertical displacements are common to both. Then, 

the strain is written as Eq. (4.9), as the displacement over the cell height, and equated 

to the cell and base material stresses over the respective elastic moduli employing 

Hooke´s law. 

𝜀 =
𝛿

𝐻
=
𝜎𝑐
𝐸𝑐
=
𝜎𝑠
𝐸3𝑠

 (4.9) 

 Incorporating Eq. (4.8) into Eq. (4.9), the elastic modulus of the core 𝐸𝑐 is given 

in Eq. (4.10). 
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𝐸𝑐 =
𝜎𝑐
𝜎𝑠
𝐸3𝑠 =

2𝑡

𝐿
𝐸3𝑠 = �̅�𝐸3𝑠  (4.10) 

Eq.(4.10) shall only be applied for estimating the elastic modulus of reference 

cores, where the unit cells walls are made from base material without cavities, because 

the area of the base material 𝐴𝑠 is considered as of a constant cross-section of length 

L within the area of the cell element 𝐴𝑐𝑒𝑙𝑙.Thereupon, employing Eq. (4.10) directly for 

the evaluation of the Young’s modulus of the machined cores would not be representa-

tive of the true material bearing the load, since the cavities in the CFRP sheet make 

𝐴𝑠 smaller compared to the reference ones.  

Therefore, to evaluate the elastic moduli of the machined cores, it is necessary 

to set each case considering the area of material that effectively carries the payload, 

taken into account the pattern openings. As a first approach, it is assumed that the 

cruciform cross-section of the strut bears most of the compressive loads. Thus, an 

equivalent cruciform column of constant profile with four identical flanks of thickness t 

and an equivalent width 𝐿𝑒𝑞/2 approximates the cell element with the pattern cavity 

(Figure 4.9). The size of 𝐿𝑒𝑞 is taken as the minimum width of the strut at the mid-plane. 

 

Figure 4.9. Sketch example of the structure approximation by a cruciform column 

Then, recalling Eq. (4.2), Eq. (4.6) and replacing Eq. (4.1) by the area of the 

base material for the machined core cases as 𝐴𝑠 = 2𝑡𝐿𝑒𝑞 and introducing them into Eq. 

(4.10), the core elastic modulus of the machined cores is given by Eq.(4.11). 

𝐸𝑐 =
2𝑡𝐿𝑒𝑞

𝐿2
 𝐸3𝑠 (4.11) 
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 The results of the analytical approached for the core compressive stiffness re-

garding Eq. (4.10) and Eq. (4.11) are found in Table 4.4. 

Table 4.4. Core compressive elastic moduli obtained by analytical approaches 

Pattern 
𝐿 𝐿𝑒𝑞 𝐸3𝑠 𝐸𝑐 

(mm) (mm) (GPa) (MPa) 

Design 1 20 6.910 62.6 1403.50 

Design 2  20 7.694 62.6 1562.84 

Design 3  20 6.800 62.6 1381.25 

Reference 50 50 62.6 1627.60 

4.3.1.2 Numerical approach 

Cells based on CFRP sheet material are discretized using a mesh of shell ele-

ments (CQUAD4, 4-node reduced integration) of size 0.4, representing the geometry 

of the studied cores (Figure 4.3). By using rigid elements at the top node-line, a load 

P of 1 kN is applied simulating a compressive load over the main set (load-controlled). 

The bottom node-lines are set as fully clamped while the top nodes only are able to 

displace according to z-direction. Considering small displacements and linear elastic 

behaviour (via static analyses), the elastic modulus can be derived from the vertical 

displacement δ obtained by the FE simulations and employing Eq. (4.12).  

𝐸𝑐 =
𝐻

𝛿
𝜎𝑐 (4.12) 

Figure 4.10 shows the distributions of the normal stress 𝜎𝑧 contour plots for a 

vertical load of 1 kN. Core design 1 and 2 denote a higher local stress concentration 

at the mid-plane edges as an effect of the cross-section reduction along the profile 

(i.e., from the top to the mid-plane and from the mid-plane to the bottom). In particular, 

core design 2 do exhibit higher stresses at the central strut and the small columns at 

each side as a result of the smaller cross-sectional area. Core design 3 shows a more 

uniform stress distribution in the middle cruciform column compared to design 1 and 

2, as a result of the vertical lineal profile along the machined pattern from top to bottom. 

In this case, the local stresses are not as concentrated as in previous core patterns. 

As seen in the contour plots, the machined area does not contribute significantly to the 

overall payload capability of the cell (red contour). Moreover, the reference core exhib-
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ited a regular stress distribution since no local stress concentration is attained, be-

cause the cross-sectional profile is constant along the cell. The little variation in the 

contour plot is attributed to numerical noise since the stress values are nearly constant. 

(a) (b) 

  

(c) (d) 

  

Figure 4.10. Contour plots of the normal compressive stress distribution by FE simu-

lations: (a) core design 1, (b) core design 2, (c) core design 3, and (d) refence core 

Table 4.5 comprises the relevant information regarding FEM results and a brief 

comparison with the theoretical ones. For a load of 1 kN, the average stresses in the 

mid-plane nodes of the base material 𝜎𝑠 are of 118.62 MPa, 104.12 MPa, and 122.76 

MPa for core design 1, 2 and 3, respectively. In contrast to the machined cores, the 

reference cell shows a homogeneous normal stress distribution of value 15.385 MPa. 

For this case, considering the applied load over the cell 1 kN, and dividing it by the 

base material area 𝐴𝑠 = 2𝑡𝐿 = 65 mm2, the analytical value for the stress over the base 

material 𝜎𝑠 is 15.385 MPa, and thus, the negligible stress variations on the mesh from 

the simulations (numerical noise) are then disesteemed. Furthermore, the exhibited 

peak elastic moduli bound obtained by Eq. (4.12) of the cores is of 1392.54 MPa for 
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the core design 3, as the minimum; and 1935.98 MPa for the core design 2, as the 

maximum. Core design 1 presents an elastic modulus of 1599.5 MPa, slightly above 

of the reference core, which shows a compressive modulus of 1572.76 MPa according 

to simulations. The latter results are discussed in section 4.5.1.2. 

Table 4.5. Core compressive stresses, strains and elastic moduli obtained by FE. 

Pattern 
𝐿  𝐻 𝜎𝑠 𝛿 𝜖𝑐 𝐸𝑐 𝐸𝑐* 

(mm) (mm) (MPa) (mm) (μm/m) (MPa) (MPa) 

Design 1 20 25.4 118.62 0.03970 1562.99 1599.50 1403.50 

Design 2  20 25.4 104.12 0.03280 1291.13 1935.98 1562.84 

Design 3  20 25.4 122.76 0.04560 1795.53 1392.54 1381.25 

Reference 50 25.4 15.385 0.00646 254.33 1572.76 1627.60 

Note: (*) Theoretical value 

4.3.2 Compressive strength 

Different failure mechanisms can occur during compressive loading. The mech-

anism that demands the lowest payload for the collapse of the structure will determine 

the critical compressive load 𝑃𝑐𝑟𝑖𝑡 and thereby, the core compressive strength. Thus, 

the core peak strength 𝜎𝑐𝑝𝑘 depends on the mechanism that governs the failure of the 

base material, either by elastic or crushing failure of the cell members (Eq. (4.13)). 

Considering the base material as an orthotropic composite material and assuming uni-

form straining under compressive loading, four failure stress mechanisms are identified 

as:  

1. Maximum compressive strength 𝜎𝑐𝑅 (when the base material´s strength is ex-

ceeded beyond 𝜎3𝑠
− ). 

2. Torsional buckling 𝜎𝑐𝑇𝐵. 

3. Euler flexural buckling 𝜎𝑐𝐸𝑢. 

4. Plate elastic buckling 𝜎𝑐𝐵. 

𝜎𝑐𝑝𝑘 = 𝑚𝑖𝑛(𝜎𝑐𝑅 , 𝜎𝑐𝑇𝐵, 𝜎𝑐𝐸𝑢, 𝜎𝑐𝐵) (4.13) 

After failure modes evaluation, the mode with a higher likelihood to occur is de-

noted as torsional buckling, due to the laminate mechanical properties, architecture, 

and geometry of the cores, that leads to lower critical loads. The result is contrasted 

with numerical simulations with good correspondence. 
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4.3.2.1 Analytical approach 

As previously presented in Chapter 2, FRP may fail either by strength or by 

stability. Since the lightweight cores proposed consist of thin-walled CFRP plates, the 

stability phenomenon is assumed to be the failure mode with the highest probability of 

occurrence in compression tests. When cores are loaded with an out-of-plane com-

pressive load, it is assumed that all cell walls are loaded equally to ease the analysis. 

The different failure mechanisms are addressed as follows.  

4.3.2.1.1 Maximum compressive strength 

Fibre reinforced polymer composites under longitudinal compression loads, 

may fail by strength as a localised buckling of the fibres (micro-buckling). The Budian-

sky´s failure model is employed for calculations as described in section 2.2.3.1.2.2. 

Then, the average composite compressive strength estimated is 𝜎3𝑠
−  = 482 MPa (see 

Annex B for further details).  

The maximum compressive strength of the core regarding the base material 

compressive failure, is analysed through a representative cell element model (Figure 

4.8). Thus, when the core is subjected to an out-of-plane compressive load 𝑃, failure 

may be attained when the base material strength is reached. The applied load is com-

mon to the base material and the cell used for analyses. Therefore, the critical load 𝑃𝑐𝑅 

(i.e., when failure is attained) is written in terms of the product of composite compres-

sive strength 𝜎3𝑠
−  and the base material area 𝐴𝑠, and the product of the core compres-

sive strength 𝜎𝑐𝑅 and the cell area 𝐴𝑐𝑒𝑙𝑙 (Eq. (4.14)). 

Consequently, the core compressive strength is dependent on the core relative 

density as Eq. (4.15), and its valid for a full walled sheet material (reference cores).  

As seen in section 4.3.1.1, for the machined cores it is necessary to consider the 

amount of material bearing the load, and thus, a cruciform strut with flanks of 𝐿𝑒𝑞/2 is 

implemented for approximations on the calculation. Introducing the area of the base 

material as 𝐴𝑠 = 2𝑡𝐿𝑒𝑞, Eq. (4.15) is written as Eq. (4.16) for the compressive strength 

of the machined core cases, disregarding the contribution to the payload of the ma-

chined curves as a first approximation. 

𝑃𝑐𝑅 = 𝜎3𝑠
−  𝐴𝑠  =  𝜎𝑐𝑅 𝐴𝑐𝑒𝑙𝑙 (4.14) 

𝜎𝑐𝑅 = 𝜎3𝑠
−
𝐴𝑠
𝐴𝑐𝑒𝑙𝑙

= 𝜎3𝑠
−  �̅� (4.15) 
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𝜎𝑐𝑅 = 𝜎3𝑠
−
2𝑡𝐿𝑒𝑞

𝐿2
   (4.16) 

4.3.2.1.2 Torsional buckling 

If core members are considered as of an array of cruciform cross-section col-

umns and of an open profile (i.e., each flank is free from constraints on the lateral 

vertical side), under uniform out-of-plane compressive loads and considering equally 

loaded core members, thin walled-columns may buckle in a torsional manner. In other 

words, when the structure reaches a critical load 𝑃𝜑, each flank buckles by turning 

around the vertical axis (z-axis); while the common vertical axis remains straight (Fig-

ure 4.11). The curved arrows shown symbolize the turning direction of the flanks an 

angle 𝜑. 

 

Figure 4.11. Column of cruciform cross-section showing torsional buckling [165] 

The complete theory to be used in the analysis of torsional buckling is presented 

by Timoshenko [165], considering a column as a bar of cruciform cross-section. Re-

garding the proposed cores, the cruciform cross-section is made of four identical flanks 

(double symmetric) of thickness t and a width of 𝐿𝑒𝑞. The symmetry associated to the 

core cases, eases the analyses as the shear centre coincides with the centroid. Con-

sidering the latter aspect and applying appropriate boundary conditions satisfied by 

sinusoidal solutions, three independent equations are attained. Two of them are dis-

cussed in the following section as the Euler critical loads for flexural buckling. The other 

equation is the critical load for pure torsional buckling 𝑃𝜑 given in Eq. (4.17) 
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Coefficient 𝐶1 is called the warping rigidity, where 𝐶𝑤 is the warping constant 

and equals to zero for cruciform cross-sectional shapes consisting of thin rectangular 

elements which intersect at a common point [165]. 𝐼𝑜 is the polar moment of inertia of 

the cross-section about shear centre [0; 0; H/2] considering Figure 4.11 coordinate 

system. Coefficient C represents the torsional rigidity. J is the torsion constant and 

depends on the number of flanks m. 

𝑃𝜑 =
𝐴𝑠
𝐼𝑜
(𝐶 + 𝐶1

𝜋2

𝐻2
) (4.17) 

 Where: 

𝐶1 = 𝐸3𝑠𝐶𝑤 = 0 (4.18) 

𝐶 = 𝐽 𝐺13𝑠 =
𝑚𝐿𝑡3

6
𝐺13𝑠 =

2

3
𝐿𝑡3𝐺13𝑠 (4.19) 

𝐼𝑜  = 𝐼𝑥 + 𝐼𝑦 ≈ 2
𝑡𝐿3

12
=   

𝑡𝐿3

6
 (4.20) 

 Replacing above equations into Eq. (4.17), the critical load for torsional buckling 

for a column like Figure 4.11 is given by Eq. (4.21). By employing 𝐿 / 2 as size for the 

flanks, the last equation may be valid only for full-walled cores. As seen in previous 

sections, for the machined cores the amount of material bearing the load is taken into 

account, and the strut is approximated by a cruciform column with flanks 𝐿𝑒𝑞/ 2. Thus, 

for the machined cores Eq. (4.22) will be employed.  

𝑃𝜑 =
8𝐺13𝑠𝑡

3

𝐿
 (4.21) 

𝑃𝜑 =
8𝐺13𝑠𝑡

3

𝐿𝑒𝑞
 (4.22) 

Therefore, the maximum compressive strength of the core regarding torsional 

buckling failure mode 𝜎𝑐𝑇𝐵, is evaluated based on Figure 4.8 cell model. As previously 

pointed out, the stress is defined by a critical load, which in this case is represented by 

𝑃𝜑 divided by the cell area 𝐴𝑐𝑒𝑙𝑙 as given in Eq.(4.23). The contribution of the machined 

area is neglected, as previously stated.  

𝜎𝑐𝑇𝐵 =
𝑃𝜑

𝐴𝑐𝑒𝑙𝑙
 (4.23) 
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4.3.2.1.3 Euler flexural buckling 

As introduced in previous section, column flexural buckling shall be also consid-

ered as failure mode. In this case, loads 𝑃𝑥 Eq. (4.24) and 𝑃𝑦 Eq. (4.25) are commonly 

known as the Euler critical loads for flexural buckling about x and y-axes [165], respec-

tively (coordinate system as in Figure 4.11). Both 𝐼𝑥 and 𝐼𝑦 represent the second mo-

ment of area of the cross-section according to x and y-axes, in which case are equal 

for symmetrical cruciform sections.  

𝑃𝑥 =
𝜋2𝐸3𝑠𝐼𝑥
𝐻2

≈
𝜋2𝐸3𝑠 𝑡 𝐿

3

12𝐻2
 (4.24) 

𝑃𝑦 =
𝜋2𝐸3𝑠𝐼𝑦

𝐻2
≈
𝜋2𝐸3𝑠 𝑡 𝐿

3

12𝐻2
 (4.25) 

 As in previous cases, the above equations are valid for the reference cores for 

flanks 𝐿/2 . For the machined cores Eq. (4.26) and Eq.(4.27) will be employed.  

𝑃𝑥 =
𝜋2𝐸3𝑠𝐼𝑥
𝐻2

≈
𝜋2𝐸3𝑠 𝑡 𝐿𝑒𝑞

3

12𝐻2
 (4.26) 

𝑃𝑦 =
𝜋2𝐸3𝑠𝐼𝑦

𝐻2
≈
𝜋2𝐸3𝑠 𝑡 𝐿𝑒𝑞

3

12𝐻2
 (4.27) 

Hence, evaluating Euler flexural buckling failure mode the compressive strength 

of the core 𝜎𝑐𝐸𝑢 is presented in Eq. (4.28) employing Figure 4.8 as cell model. Then, 

the stress is represented by critical loads 𝑃𝑥 or 𝑃𝑦 divided by the cell area 𝐴𝑐𝑒𝑙𝑙 

𝜎𝑐𝐸𝑢 =
𝑃𝑥
𝐴𝑐𝑒𝑙𝑙

=
𝑃𝑦

𝐴𝑐𝑒𝑙𝑙
 (4.28) 

4.3.2.1.4 Plate elastic buckling 

Another failure mode evaluated with a high likelihood to take place, is related to 

another case of elastic buckling. Therefore, noting the involved geometries under uni-

formly compressed loading, elastic buckling of thin-walled rectangular plates shall be 

found, particularly for the reference core case.  

As previously stated, the columns are approximated as a bar of cruciform cross-

section, made of four identical flanks of thickness t and a width 𝐿𝑒𝑞/2 for the machined 

cores, and a width of L/2 for the reference core. The formula presented by Ericksen 

[166] is implemented for the evaluation of plate elastic buckling, made from an ortho-

tropic base material Eq.(4.29), where coefficient D represents the bending stiffness of 
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a plate and shall be written as Eq. (4.30) for orthotropic composite materials. Factor 𝜆  

is defined by the Poisson´s moduli of the base material as 𝜆 = 1 – 𝜐13𝑠. 𝜐31𝑠. Factor B 

represents the length of the loaded plate edge. Coefficients ci depend on border con-

ditions. 

𝑃𝐵 =
𝐾𝜋2𝐷

𝐵2
 (4.29) 

Where:  

𝐷 =
√𝐸1𝑠𝐸3𝑠

𝜆
(
𝑡3

12
) (4.30) 

𝐾 = 𝛼𝑐1 + 2𝛽𝑐2 +
𝑐3
𝛼

 (4.31) 

𝛼 = √
𝐸1𝑠
𝐸3𝑠

 (4.32) 

𝛽 =
1 − 𝜆

√𝐸1𝑠𝐸3𝑠
(
𝐸1𝑠𝑣31𝑠
1 − 𝜆

+ 2𝐺13𝑠) (4.33) 

The form of the coefficients ci (with i = 1, 2, 3) vary substantially from one border 

constraints case to another (see reference [166] for further details). For example, the 

case whether to be assumed as governed by plate buckling with simply supported 

edges, the coefficients are given by Eq. (4.34), Eq. (4.35) and Eq. (4.36). 

𝑐1 =
1

𝑛2
(
𝐻

𝐵
)
2

 (4.34) 

𝑐2 = 1 (4.35) 

𝑐3 = 𝑛
2 (
𝐵

𝐻
)
2

 (4.36) 

The solutions associated to the analytical proposals are attained by applying 

suitable forms of sinusoidal functions, thus n represents the number of half waves into 

which the plate buckles. For this work, a half-wave sinus (n=1) and one-wave functions 

are considered (n=2), and the resulting smaller value for the critical load is later pre-

sented in the following section. 

By evaluating plate buckling behaviour, the representative maximum compres-

sive strength is given as 𝜎𝑐𝐵, defined by the critical load 𝑃𝐵 divided by the unit cell area 

𝐴𝑐𝑒𝑙𝑙 as given in Eq. (4.37). Figure 4.8 is implemented as unit cell model. 
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4.3.2.1.5 Analytical results  

The analytical results for the core compressive strength predictions are high-

lighted in Table 4.6, complemented by the bar graphic on Figure 4.11.  

Table 4.6. Core compressive strength theories according to analytical approaches 

Pattern 
𝐿 𝐿𝑒𝑞 𝜎𝑐𝑅 𝜎𝑐𝑇𝐵 𝜎𝑐𝐸𝑢 𝜎𝑐𝐵 

(mm) (mm) (MPa) (MPa) (MPa) (MPa) 

Design 1 20 6.910 10.164 2.8297 42.710 11.840** 

Design 2  20 7.694 11.579 2.7524 46.419 11.620** 

Design 3  20 6.800 9.821 2.8839 40.353 12.010** 

Reference 50 50 12.538 0.06251 25892 2.069* 

Note: minimum plate buckling stress values obtained for: (*) n=1, (**) n=2 

The minimum stress values, and thus, the failure modes are predicted for the 

cases of torsional buckling (machined cores) and plate buckling (reference cores). 

Some values for reference cores, for example, they do not satisfy the specific neces-

sary boundary conditions for pure torsional buckling behaviour (e.g., it is required to 

consider the flanks as a plate simply supported along three sides and completely free 

along the fourth side [165]) and thus, they may not give accurate results. Additionally, 

the width/length ratio is not considered in Eq. (4.21) and may lead to a critical load 

extremely low for large flanks cells. Moreover, the Euler flexural buckling is not repre-

sentative of failure values in the reference cores (extremely high) compared to the 

other failure modes, and thus, with less probability to occur. These two values (1) and 

(2) in Table 4.6 will be neglected in further comparison studies for being impractical.  

The bar graphics on Figure 4.11. show the failure modes with the high likelihood 

to occur, comparing the theories proposed as approach. As previously said, the gov-

erning failure modes are torsional buckling and plate buckling modes. The cases of 

micro-buckling or the Euler column buckling model present larger predicted failure 

loads, and thus, less probability to come about. 

𝜎𝑐𝐵 =
𝑃𝐵
𝐴𝑐𝑒𝑙𝑙

 (4.37) 
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Figure 4.12. Comparison between theoretical approaches for the maximum compres-

sive strength 

4.3.2.2 Numerical approach 

The failure stresses due to strength (failure of the base material without buck-

ling) and the buckling failure stress are also via FE simulations evaluated. The stresses 

are analysed separately, through two different simulations:  

1. Through a linear static simulation (not considering instability phenomena, it rep-

resents a strength failure), similarly as carried-out in section 4.3.1.2, then attain-

ing the core compressive strength 𝜎𝑐*.  

2. A non-linear static simulation (considering instability), as the critical stress given 

by the core compressive strength 𝜎𝑐
∗∗.  

The study of the non-linear static simulation is detailed in this section. Cell ele-

ment based on CFRP cell-wall are simulated by a mesh of shell elements of size 0.4 

mm (CQUAD4, 4-node reduced integration), discretizing the core geometries given in 

Figure 4.3, and using Table 4.2 as base material properties. A non-linear static model 

based in a modified Newton-Raphson method is employed for the simulation. The bor-

der conditions are established in correspondence to the analytical models previously 

presented, in which the top and bottom-line nodes of the cell element are simulated as 
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simply supported, and the lateral vertical nodes are left free of constraints. For the 

reference case, the lateral flanks are set with no rotation in z-direction for the vertical 

nodes. A load P of 10 kN is applied over the top-line nodes until the simulation stops. 

From the tracking of displacements of representative nodes (Figure 4.13) within the 

discretised mesh on a cell, the instability load is then estimated from the tracking charts 

(Figure 4.14).  

(a) Design 1 (b) Design 2 (c) Design 3 (d) Reference 

    

Figure 4.13. Schemes of selected nodes for displacement tracking in x-direction 

Figure 4.14 exhibits the node tracking displacements due to the applied load 

upon the cores investigated. At the beginning, the curves lines show a stabile behav-

iour until the inflexion point, where the curve branches in an asymptotic-like form. The 

behaviour of the machined cores after the inflexion point, quickly becomes unstable 

and the simulation stops. The inflection point (critical load) is similar in all machined 

cases. Alternatively, the reference core presents a much steeper asymptotic curve 

than the previous mention, with a higher critical load. Also, this would mean that the 

structure may remain stable longer after the critical point and be able to carry further 

load. The substantial differences in the behaviours shown between the cores with and 

without cavities are mainly due to the cell size and the boundary conditions imposed. 

While the cell vertical flanks of the machined sheet are simulated without constraints, 

the reference flanks present the constraints imposed by the continuity condition given 

by the junction between cell members. Hence, although the behaviour of the reference 

cell prior to the collapse of the structure seems to be torsional buckling behaviour, it 

may not be possible to declare it as pure torsional buckling, since it is found as a nec-

essary condition that the flanks of the cross-sectional columns are free of constraints 

[165]. Therefore, the failure of the reference cores is firstly attributable to a plate buck-

ling failure mode.  
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(a) Design 1 (b) Design 2 

  

(c) Design 3 (d) Reference 

  

Figure 4.14. Load vs. node displacement curves obtained from the simulations 

Additionally, Figure 4.15 schematically represents the renderings of the defor-

mation of the cells predicted by the simulations at the instability step. In all cases, the 

cells fail by buckling as expected. The machined sheet cells resemble torsional buck-

ling behaviour, by turning the flanks around the vertical axis as rotational vector. In 

particular, design 2 exhibits a large deformation of the slender narrow plates at each 

side of the main cruciform section, denoting a premature buckling failure. Furthermore, 

the reference cell fails by buckling of the plates in a co-ordinately manner that resemble 

torsional buckling, although the border conditions may not satisfy that end, as previ-

ously stated.  
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(a) Design 1 (b) Design 2 

  

(c) Design 3 (d) Reference 

  

Figure 4.15. Renders obtained from the compressive loading simulations 

4.3.2.2.1 Numerical approach 

Table 4.7 summarizes the results obtained from simulations, and a brief com-

parison with the analytical approaches as shown below. 

Table 4.7. Core compressive strengths got from numerical and analytical approaches 

Pattern 
𝐿 𝑃𝑐𝑟𝑖𝑡* 𝜎𝑐* 𝜎𝑐** 𝜎𝑐*** Expected 

failure mode (mm) (kN) (MPa) (MPa) (MPa) 

Design 1 20 1.177 2.943 10.16 2.8297 TB 

Design 2  20 1.121 2.805 11.57 2.7524 TB 

Design 3  20 1.192 2.981 9.82 2.8839 TB 

Reference 50 5.483 2.194 12.53 2.0690 PB 

Note: (*) Non-linear static simulation, (**) Linear static simulation, (***) Analytical 
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Factor 𝑃𝑐𝑟𝑖𝑡* represents the critical load of the cell element via non-linear anal-

yses. Although the reference cell has a failure load of almost 4.6 times higher than the 

best of the proposed cores, the smaller number of struts within a sandwich panel limits 

its total load capability, and the strength of the reference cores is found smaller. No 

major differences are observed among the other proposed cores, having an average 

failure stress of around 2.9 MPa. The strengths obtained from the linear analyses are 

significantly higher compared to the other estimations. Nevertheless, the minimum 

strength analytical values are in good correspondence with the FE non-linear simula-

tions, being the expected failure modes as of torsional buckling (TB) for the machined 

cores and of plate buckling (PB) for the reference one. 

4.4 Core plate shear 

In this section, by evaluating the response of a cell element under shear loads in 

the upper and lower planes (Figure 4.16), the mechanical properties of the cores of 

interest, comprising: the reference, design 1 and 2 cores (dimensions regarding to Ta-

ble 4.3), are estimated. Figure 4.16.b represents a top view of the load case and the 

selected single representative cell element. The study contemplates a typical plate-

shear model upon sandwich panels [167]. 

(a) (b) 

  

Figure 4.16. (a) A schematic shear load case over a unit cell. (b) A top-view render 

with a schematic cell used for calculations and generic shear loads. 
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Both analytical and numerical studies are included in this section. In the analytical 

approaches, the shear modulus is estimated analysing the displacements due to a 

generic shear load P, applied about the orientation angle 𝛼 and distributed along the 

core cells. The present work studies the particular case when the shear load vectors 

are parallel to the x-axis (𝛼 = 0). The failure prediction includes three different ap-

proaches from simple theoretical models, providing the necessary insights for estimat-

ing the failure behaviour of the cores. In all cases, the cell walls are assumed as thin 

orthotropic plates clamped at the bottom and the top, neglecting the contribution of the 

transverse cell walls (that is, the sheet plates parallel to the y-direction). Figure 4.17 

shows the approximation model used for calculations. The model is an equivalent Ti-

moshenko-like beam that represents the same displacement as the cell wall assembly 

(Figure 4.17.b and Figure 4.17.c). 

(a) (b) 

 
 

 
(c) 

 

Figure 4.17. Sketches of the calculation models. (a) Cell wall sheet, neglecting trans-

versal cell walls. (b) Cell wall loaded with a shear load before and after straining. (c) 

Model of an equivalent cantilever Timoshenko-like beam before and after straining. 

Numerical models are developed based on commercial software FEMAP™ [29], 

to corroborate the theoretical analyses and to have a further overview of the proposed 
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core behaviour. Finite element displacement predictions and simple mechanical theory 

is applied for indirectly estimating the core elastic shear modulus, validated later by 

experimental tests. The material properties employed for the analyses are given in 

Table 4.2, following the coordinate system showed in Figure 4.17. Likewise, the CFRP 

plate is considered as an orthotropic material with an average thickness t = 0.65 mm. 

4.4.1 Shear stiffness 

The general expression of the core shear modulus can be defined by simple me-

chanical analyses of the behaviour of a cell subjected to shear stresses, while consid-

ering a uniform straining of the cell walls. Considering a linear behaviour and short 

displacements, the general expression of the displacement 𝛿 experienced by the cell 

assembly due to a resulting nominal load P is studied. 

4.4.1.1 Analytical approach 

When a shear load is applied regarding 𝛼 as director angle, the shear vector P 

(Figure 4.16) is set by its components by Eq. (4.38). 

�⃑� =  𝑃1⃑⃑  ⃑ + 𝑃2⃑⃑⃑⃑   (4.38) 

𝑃1 = |𝑃| cos 𝛼 (4.39) 

𝑃2 = |𝑃| sin 𝛼 (4.40) 

The general expression of the shear stress 𝜏𝑐 applied on a cell is defined by Eq. 

(4.41), where 𝛾𝑐 is the strain of the cell and 𝐺𝑐 represents the shear modulus of the cell 

element. 

𝜏𝑐 =
𝑃

𝐴𝑐𝑒𝑙𝑙
= 𝐺𝑐𝛾𝑐 (4.41) 

𝜏1 =
𝑃1
𝐴𝑠
= 𝐺31𝑠𝛾1 

(4.42) 

𝜏2 =
𝑃2
𝐴𝑠
= 𝐺31𝑠𝛾2 

(4.43) 

Similarly, the stress components depend upon the director angle following 

above expressions as Eq. (4.42) and Eq. (4.43), where 𝐺31𝑠 is the shear modulus of 
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the base material, 𝛾1 and 𝛾2 are the unit-cell strains according 1-direction and 2-direc-

tion and 𝐴𝑠 the base material area. 

 

Figure 4.18. Displacement vector sketch reference for shear strain definition 

The strains 𝛾1 and 𝛾2 are defined by their respective component displacements 

𝑢1 and 𝑢2 (schematically shown in Figure 4.18) at the top plate (Figure 4.16.b). The 

total displacement of the cell is represented by 𝑢𝑐. 

𝑢1 = 𝛾1𝐻 (4.44) 

𝑢2 = 𝛾2𝐻 (4.45) 

𝑢𝑐 = √𝑢12 + 𝑢22
2

 (4.46) 

 The total strain 𝛾𝑐on the cell is given by Eq. (4.47) 

𝛾𝑐 =
𝑢𝑐
𝐻
=
√𝑢12 + 𝑢22
2

𝐻
 (4.47) 

Recalling Eq. (4.41) and introducing Eq. (4.47), the load P turns into the expres-

sion of Eq. (4.48). 

𝑃 = 𝐺𝑐
√𝑢12 + 𝑢22
2

𝐻
𝐴𝑐𝑒𝑙𝑙 (4.48) 

Since the director angle is set in this work as 𝛼 = 0, only the component accord-

ing to 1-direction will be considered (𝑢2 = 0), because the normal cell walls undergo 

bending and just carry an insignificant component of the shear load. Likewise, only the 

component of the load 𝑃1 is considered (𝑃2 = 0). Then, the expressions in Eq. (4.38) 

and Eq.(4.48) are specified for the case said as Eq. (4.49). 

𝑃 = 𝑃1 = 𝐺𝑐𝛾1𝐴𝑐𝑒𝑙𝑙 (4.49) 

 Equating the above expression to Eq. (4.42), the expression in Eq. (4.50) is 

attained 

𝑃1 = 𝐺𝑐𝛾1𝐴𝑐𝑒𝑙𝑙 = 𝐺31𝑠𝛾1𝐴𝑠 (4.50) 
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Consequently, solving Eq. (4.50) for 𝐺𝑐 and introducing Eq. (4.6), the expression 

for the shear elastic modulus of the core is attained as Eq. (4.51), in which the elastic 

shear modulus of the square-honeycomb core is then related to the core relative den-

sity �̅�. 

𝐺𝑐 = 𝐺31𝑠
𝐴𝑠
𝐴𝑐𝑒𝑙𝑙

= 𝐺31𝑠
2𝑡𝐿

𝐿2
= 𝐺31𝑠

𝑡

𝐿
= 𝐺31𝑠  

�̅�

2
 (4.51) 

The formula given by Eq. (4.51) is assumed to be valid for full-walled cores (i.e., 

without machined geometries). In this work, the densities of the machined cores (i.e., 

with cavities) are found to be almost equal (Table 4.3). As a result, this approach can-

not predict properly their mechanical properties, because it does not consider the ge-

ometrical effects of the large cavities. To overcome this difficulty, the following anal-

yses are proposed as well for mechanical properties predictions of the machined cores. 

When a beam is loaded with a load such as in Figure 4.17, the deflection at the 

loaded point can be determined by Castigliano´s second theorem (Eq.(4.52)) [67]. 

𝛿𝑗 =
𝜕𝑈𝑖
𝜕𝑃𝑗

 (4.52) 

The partial derivative of the deformation energy 𝑈𝑖 of a structure to any load 𝑃𝑗 

is equal to the displacement 𝛿𝑗 corresponding to that load. This form of derivative is 

applicable for short displacements and linear regimes of stress-strain. This statement 

is fulfilled while calculating the shear modulus at the very beginning of the shear tests. 

As a first approach, due to the symmetry, the model (Figure 4.17.b) can be approxi-

mated as a cantilever beam with a punctual load P (Figure 4.17.c). The internal strain 

energy of the beam is assumed to be caused by bending and shear. In this way, the 

model studied is treated as a Timoshenko-like beam that includes both bending and 

transverse shear effect. The transverse shear effect is neglected by Euler-Bernoulli 

classical beam theory [146,147]. Hence, the successive planes that made the profile 

are not necessarily perpendicular to the bending line (Figure 4.17.c). 

The total displacement is defined by the sum of both effects, 𝑈𝑖𝑏 the internal 

strain energy of a beam subjected just to a bending deformation and 𝑈𝑖𝑠 the internal 

strain energy of a beam due to shear loading (Eq. (4.53)). 

𝛿𝑗 = 𝑈𝑖𝑏 +𝑈𝑖𝑠 (4.53) 
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The displacement 𝛿𝑗 is then obtained by tabulated results as Eq. (4.54) [168], in 

which, factor 𝐼𝑦 represents the cross sectional second moment of area regarding to y-

direction, and 𝐴𝑘𝑠 represents the cross-sectional area over the form factor for shear 𝑘𝑠,  

𝛿𝑗 =
𝑃𝐻3

12𝐸1𝑠𝐼𝑦
+

𝑃𝐻

𝐺31𝑠𝐴𝑘𝑠
 (4.54) 

In which, factor 𝐼𝑦 represents the cross sectional second moment of area re-

garding to y-direction, and 𝐴𝑘𝑠 represents the cross-sectional area of the material 𝐴𝑠 

over a form correction coefficient for shear 𝑘𝑠 (𝐴𝑘𝑠 = 𝐴𝑠 𝑘𝑠⁄ ), due to the assumption of 

an average shear stress acting over the entire beam cross section. Then, factor 𝑘𝑠 is 

constant of a value of 6/5 for rectangular cross section beams [169]. 

The cross-sectional area 𝐴𝑠 in Eq. (4.54) is valid for a beam of constant section. 

For the case of the machined cores, the cross-sectional area varies along the profile. 

Therefore, for simplifying the study, a constant value is considered while representing 

the behaviour of the cell element wall, with an equivalent beam that would exhibit the 

same displacements as the real case. The beam equivalent corrected cross-sectional 

area 𝐴𝑘𝑒𝑞 (Eq. (4.56)) will be approximated via numerical studies. The displacement is 

then attained as Eq. (4.55). 

𝛿𝑗 =
𝑃𝐻3

12𝐸1𝑠𝐼𝑦
+

𝑃𝐻

𝐺31𝑠𝐴𝑘𝑒𝑞
 (4.55) 

𝐴𝑘𝑒𝑞 = 𝐴𝑒𝑞 𝑘𝑠⁄ = 𝐿𝑒𝑞 . 𝑡 𝑘𝑠⁄  (4.56) 

The shear modulus of the representative cell element is obtained as Eq. (4.57) 

by the shear stress 𝜏𝑐 to shear strain 𝛾𝑐 ratio, applying a generic shear force P accord-

ing to 𝛼 = 0, then 𝑃 = 𝑃1 (Figure 4.17), neglecting the contribution of the perpendicular 

wall sheets, and introducing 𝛿𝑗. 

𝐺𝑐 = 
𝜏𝑐
𝛾𝑐
=

𝑃𝐻

𝐴𝑐𝑒𝑙𝑙𝛿𝑗
 (4.57) 

Table 4.8 shows the results obtained via analytical approaches, implementing a 

line load P of 10 N/mm (i.e., P = 200 N and P = 500 N for the 20x20 mm cells and 

50x50 mm, respectively). For the reference cores, the core shear modulus is calculated 

by Eq. (4.51), attaining a theoretical value of 46.28 MPa. For the machined cores, the 

equivalent area of the beam 𝐴𝑘𝑒𝑞 is calculated through the estimated displacement 𝛿𝑗. 
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As a first approach, the displacement implemented is extracted from the numerical 

approaches and equating it into Eq. (4.55). Then, their shear modulus is calculated by 

Eq. (4.57) and values of 50.55 MPa and 23.25 MPa are estimated for the core design 

1 and 2, respectively. For the reference cores, the core shear modulus is calculated by 

Eq. (4.51), attaining a theoretical value of 46.26 MPa. For the machined cores, the 

equivalent area of the beam 𝐴𝑘𝑒𝑞 is calculated through the expected displacement 𝛿𝑗. 

As a first approach, the displacement implemented is extracted from the numerical 

approaches and equating it into Eq. (4.55). Then, their shear modulus is calculated by 

Eq. (4.57) and values of 50.55 MPa and 23.25 MPa are estimated for the core design 

1 and 2, respectively. 

Table 4.8. Shear elastic moduli obtained by analytical approaches 

Pattern 
𝐻 𝐿 𝐸1𝑠 𝐺31𝑠 𝐴𝑘𝑒𝑞 𝐼𝑦 𝛿𝑗 𝐺𝑐 

(mm) (mm) (GPa) (GPa) (mm2) (mm4) (mm) (MPa) 

Design 1 25.4 20 62.6 3.56 6.78 106.56 0.251 50.55 

Design 2  25.4 20 62.6 3.56 4.36 28.36 0.546 23.25 

Reference 25.4 50 62.6 3.56 -- -- -- 46.28 

4.4.1.2 Numerical approach 

In order to obtain the FE estimated shear elastic modulus of the cores 𝐺𝑐, load-

displacement curves are calculated for three different element sizes and different loads 

applied (Figure 4.19). The CFRP sheet material is simulated by a mesh of shell ele-

ments (CQUAD4, 4-node reduced integration), according to design 1, 2 and reference 

geometries as proposed in Figure 4.3. The nodes on the plane z = 0 are set as con-

strained, while the nodes over the plane 𝑧 = 𝐻 are constrained to move just in x-axis 

for simplifying the analyses, considering small displacements. For the reference core 

case, due to the quasi-continuity of the cells along the vertical flanks (i.e., the cells are 

in contact to each other all along the flanks borders), the case resembles a case of the 

shear flow theory [67,68], in which a plate is surrounded over the entire length with 

elastic pins. For this case, the vertical nodes at each flank of the studied plate are 

considered as simply supported, with the possibility of displacement in x-direction. A 

line load is applied over the top node-line, reproducing a shear load over the main set. 

Extrapolation of the values are carried-out in the limit as the element size tends to zero. 

Recalling Eq. (4.41) and Eq. (4.47), the shear modulus by the numerical approach of 
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each core is calculated by Eq. (4.58) while considering the slope s from the load-dis-

placement charts (for displacements specified in the 1-direction). 

𝐺𝑐 =
𝑃

𝐴𝑐𝑒𝑙𝑙 𝛾𝑐
= 

𝑃𝐻

𝐴𝑐𝑒𝑙𝑙 𝑢𝑐
=
𝑠𝐻

𝐴𝑐𝑒𝑙𝑙
 (4.58) 

(a) Design 1 (b) Design 2 

  

(c) Reference  

 

 

Figure 4.19. Load vs. displacement curves obtained from the FE simulations: (a) de-

sign 1, (b) design 2 and (c) reference core 

Therefore, the displacement of the nodes is studied using linear static analyses. 

Renders of the shear response of simulated CFRP sheets also emerge from these 

simulations and are shown in Figure 4.20. A generic line-load of 10 N/mm is applied 

on the top node-line as previously mentioned. Shear stresses contours plots in xz-

plane are shown and the simulated deformation as well for the cores proposed as de-

sign 1 and design 2 (Figure 4.20.a and Figure 4.20.b, respectively). The cells show a 
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stress concentration at the middle strut with a parabolic stress distribution over the 

width. Moreover, the highest shear stresses are located at the mid-plane (or neutral 

axis) and the middle sections. For the case 2, the struts at both sides of the centre 

column do not bear significant share of the main load, which is mostly concentrated in 

the mid-strut as a result of a higher bending rigidity compared to the slender ones. In 

contrast to them, Figure 4.20.c represents the case of the reference cores, showing an 

average shear stress distribution of value ≈ 15.38 MPa along the plate. The average 

shear stress over the plate can be calculated as 𝜏 = 𝑃 𝐴𝑠⁄ = 500/ (0.65 ∙ 50) =15.385 

MPa, agreeing with the simulation. Quasi-constant shear bands are also seen at the 

edges of the plate, denoting a case in correspondence with the shear flow theory [68].  

(a) Core design 1 (b) Core design 2 

  

(c) Reference core 

 

Figure 4.20. Contour plots of the shear stress distribution by FE: (a) design 1, (b) 

design 2, and (c) reference 

Table 4.9 summarises the results obtained from linear-static simulations, com-

paring both shear modulus attained by theoretical approaches (Eq. (4.57) and by FE 

(Eq. (4.58)). The largest shear strain is shown by core design 2, mainly by the shear 
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and bending effect experienced by the mid-column, which is the one that bears most 

of the loads, exhibiting the smaller core modulus as well (𝐺𝑐 = 23.26 MPa). Although 

the core design 1 shows a locally larger straining (that is, within a cell) compared with 

the reference core, its core modulus is predicted as better than the reference one, 

because of the number of struts working at the same time resisting the load (50 vs.16-

struts respectively per sample of 200 by 100 mm). The table also gives information of 

the displacements used to calculate 𝐿eq to be implemented as a part of the equivalent 

area 𝐴𝑒𝑞 = 𝐿𝑒𝑞 . 𝑡 in equation (4.55). 

Table 4.9. Core shear stresses, strains and elastic moduli obtained by FE. 

Pattern 
𝐿 𝜏𝑠 𝑢𝑐 𝐿𝑒𝑞* 𝑠 𝛾𝑐 𝐺𝑐 𝐺𝑐* 

(mm) (MPa) (mm) (mm) (N/mm) (μm/m) (MPa) (MPa) 

Design 1 20 58.12 0.251 12.53 796 9881 50.59 50.55 

Design 2  20 74.08 0.546 8.06 366 21496 23.26 23.25 

Reference 50 15.38 0.119 -- 4201 4685 42.68 46.28 

Note: (*) Theoretical approach 

4.4.2 Shear strength 

The analytical models for predicting the peak shear strength of the square hon-

eycomb cores assuming uniform straining of the CFRP sheets, are thought as least as 

three governing failure modes of the cell members, including: 

1. Maximum shear strength 𝜏𝑐𝑅 (when 𝜏𝑐𝑅 = 𝜏13𝑠),  

2. Debonding between face sheet and cell member 𝜏𝑐𝐷𝐵  

3. Elastic shear buckling 𝜏𝑐𝐵.  

The failure modes proposed below consider the base material as an orthotropic 

composite material. The core peak shear strength 𝜏𝑐𝑝𝑘 is given by the collapse mech-

anism that exhibits the minimum value as Eq.(4.59). 

𝜏𝑐𝑝𝑘 = 𝑚𝑖𝑛( 𝜏𝑐𝑅 , 𝜏𝑐𝐷𝐵, 𝜏𝑐𝐵) (4.59) 

4.4.2.1 Analytical approach 

The proposed cores are made from square arrangements of thin CFRP sheet 

materials. Assuming that only the core walls parallel to the 1-direction bear the shear 
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loads (Figure 4.17), and that the loads are equally distributed along the core, the dif-

ferent failure modes are presented below. 

4.4.2.1.1 Maximum shear strength 

The cores shear strength 𝜏𝑐𝑅 shall depend upon the failure value of the base 

composite material, considered as 𝜏31𝑠=110 MPa (Annex B). Considering a load 𝑃 ap-

plied to the core (Figure 4.17) and neglecting the contribution of transverse sheet walls, 

the failure load 𝑃𝑐𝑅 applied to the unit-cell walls and thus, to the core, is the same and 

given as Eq. (4.60). 

𝑃𝑐𝑅 = 𝜏31𝑠𝐴𝑠 = 𝜏𝑐𝑅𝐴𝑐𝑒𝑙𝑙 (4.60) 

Solving Eq. (4.60) for 𝜏𝑐𝑅, the core failure due to peak shear strength of the 

CFRP cell wall is obtained by Eq. (4.61) as a function of the core relative density, 

observing that only the half of the total CFRP sheets bear the shear loads. 

𝜏𝑐𝑅 =
𝐴𝑠
𝐴𝑐𝑒𝑙𝑙

𝜏31𝑠 =
𝑡𝐿

𝐿2
𝜏31𝑠 =

𝑡

𝐿
𝜏31𝑠 =

�̅�

2
𝜏31𝑠 (4.61) 

Hereby it should be noted that Eq. (4.61) is valid for reference cores (Figure 4.3) 

where the cores are made from full-walled cells. 

Other cases with machined geometries required similar analyses but consider-

ing the local mid-plane cross-sectional area of the sheet material 𝐴𝑠 = 𝑡𝐿𝑒𝑞, as previ-

ously carried-out for compression analyses (Figure 4.9). Then, applying 𝐴𝑠 into the 

maximum shear stress 𝜏𝑚𝑎𝑥 on a beam of rectangular cross-section [67], Eq. (4.62) is 

attained. 

𝜏𝑚𝑎𝑥 =
3

2
 
𝑃𝑅
𝐴𝑠
=
3

2
 
𝑃𝑅
𝑡𝐿𝑒𝑞

 (4.62) 

The maximum shear load 𝑃𝑅 is applied to the core and consequently to the base 

material. The shear stress on the core is defined as Eq. (4.41), but specifying it to the 

maximum load, then Eq. (4.63) is obtained. 

𝜏𝑐𝑅 =
𝑃𝑅
𝐴𝑐𝑒𝑙𝑙

 (4.63) 

Equating Eq. (4.62) and Eq. (4.63), and solving for 𝑃𝑅, the core shear strength 

is now represented by Eq. (4.64), according to the nominal composite shear strength 
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and leading to a shear fracture failure mode. Then, the maximum core shear stress 

depends directly to the shear strength of the base material. 

𝜏𝑐𝑅 = 
2

3
𝜏31𝑠

𝐴𝑠
𝐴𝑐𝑒𝑙𝑙

=
2

3
𝜏31𝑠

𝑡𝐿𝑒𝑞

𝐿2
 (4.64) 

 The maximum shear stresses are expected in [± 45] ° orientation [170]. Since 

the CFRP woven core base material is disposed with an orientation of [0/90] ° (i.e. 

parallel to 1 and 3-direction as explained in section 4.2), the above failure mode has a 

high likelihood to occur, because the shear loads may be only borne by the polymeric 

matrix, and not the reinforcement.  

4.4.2.1.2 Debonding 

 As stated in section 4.2, the core and skins are joined together by a bonding 

mean. The core made from thin-walled plates, presents a relatively small, bonded area, 

and thus, it also may fail by debonding failure between core and skins, due to the shear 

stresses. The shear distribution within the sandwich thickness is considered almost 

constant over the core of an average value (see Chapter 3), and thus, the bonded 

region between core and faces shall bear approximately the same amount of shear 

stress and are considered in this section for analyses.  

The bonding failure occurs when the shear stresses at the interface core/face 

sheet, exceeds the adhesion strength or 𝜏𝑖𝑛𝑡. The adhesion strength varies with the 

temperature and the time of processing. In this work, a value of 𝜏𝑖𝑛𝑡 ≈ 20 MPa is em-

ployed. This average value is obtained from the datasheet of the bonding mean as the 

UHU plus Endfest 300®.  

 

Figure 4.21. Sketches of a representative cell wall sheet showing the glued area 
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The mean bonded area 𝐴𝑏𝑜𝑛𝑑 of the cells is calculated considering the mean 

area throughout the throat of the joint (Figure 4.21), while approximating the lateral 

meniscus to a uniform triangle. This area depends upon the number N of CFRP sheets 

within a core, disregarding the transversal sheets. The triangle is thought as an isos-

celes of flank 𝑓. Then, the throat has a width of  
√2

2
𝑓 and a length 𝐿𝑐𝑜𝑟𝑒 as the length 

of the core. Regarding to the size of the core, samples of 200 by 100 mm are used for 

the calculation (Figure 4.6). The overall bonding strength depends on the adhesion 

strength and the bonded surface ratio as the bonded area-to-core area or 𝐴𝑏𝑜𝑛𝑑/𝐴𝑐𝑜𝑟𝑒. 

Due to the lack of homogeneity while gluing, the amount of glued surface is variable 

among the cells. Therefore, an average value of glued surface in the total sample sur-

face is estimated, and Eq. (4.65) is assumed to hold, where the 𝐹𝐷𝐵  represents the 

effective critical load for core-face bonding failure.  

𝐹𝐷𝐵 = 𝐴𝑐𝑜𝑟𝑒𝜏𝐷𝐵 = 𝐴𝑏𝑜𝑛𝑑𝜏𝑖𝑛𝑡𝑁 (4.65) 

𝜏𝑐𝐷𝐵 = 𝜏𝑖𝑛𝑡
√2𝑓𝐿𝑐𝑜𝑟𝑒
𝐴𝑐𝑜𝑟𝑒

𝑁 (4.66) 

Solving for 𝜏𝐷𝐵 and replacing the corresponding factors, Eq. (4.66) represents 

the average shear strength due to core-face debonding.  

4.4.2.1.3 Shear buckling 

 Since the core cell walls are made from thin composite plates, the shear loads 

applied may lead to an elastic buckling failure. Thus, stability studies are required as 

well. Therefore, elastic shear buckling may occur after exceeding the buckling shear 

limit strength 𝜏𝑐𝐵. The approximation method has a first fundamental assumption, in 

which the load-bearing capacity of the structure is exceed above the a critical buckling 

point [171].  

                 

Figure 4.22. Scheme of buckling of a rectangular plate under shear loads 
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As for the classic approximation on isotropic materials, it may be considered for 

the study a rectangular plate of constant thickness, which buckles by the action of 

evenly distributed shear forces when reaching the instability point. After the buckling 

limit has been exceeded, the sheet may continue to fold together (Figure 4.22) and to 

break the construction [171]. In the real case, after the critical point, the structure may 

bear more load and break afterwards. The approach will consider an orthotropic plate, 

which is articulated along its edges, and is free to move in the plane of the plate.  

In this work, the analytical solution to the problem will only be approached for 

the reference cores (full-walled cells). The behavior of core design 1 and 2 (machined 

cores) will only be studied via numerical analyses, because of the considerable diffi-

culties of determining the exact effect of the machined geometries, for having a varia-

tion of the struts profile that brings more complexity into the calculations. The CFRP 

base material used for the core walls are thin plates (t =0.65 mm) obtained from woven 

textiles in a symmetrical lay-up of orthotropic layers, and thus, they will be considered 

as homogeneous plates. 

Therefore, the critical elastic shear buckling stress of the CFRP sheets 𝜏𝑠𝐵, is 

defined by Eq. (4.67) according to the theory developed by Seydel [172] and expanded 

by Johns [173] and Leissa [174] that provided numerical approximations, considering 

the composite sheets as orthotropic materials.  

𝜏𝑠𝐵 = 𝐾𝑠
𝜋2

𝑡𝐿2
√𝐷1𝐷3

34

     if  𝜃 > 1 (4.67) 

Buckling factor 𝐾𝑠 in Eq. (4.67) is a tabulated value depending on border con-

straints and the relations between the orthotropic plate rigidities (𝐷1, 𝐷3 and 𝐷31) rep-

resented by factor 𝜃 (Eq.(4.68) ) and factor 𝛽𝑎 (Eq. (4.69)) [173]. 

𝜃 =  
√𝐷1𝐷3

𝐷31
 (4.68) 

𝛽𝑎 = 
𝐻

𝐿
√
𝐷1
𝐷3

4

 (4.69) 

Where: 

𝐷1 = 𝐸1𝑠𝐼𝑥 (4.70) 

𝐷3 = 𝐸3𝑠𝐼𝑧 (4.71) 
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𝐷31 = 𝐺31𝑠𝑡
3/6 (4.72) 

In this work, the boundary conditions are assumed as an approximation of a 

plate pinned (or articulated) along the edges. In the last expression, 𝐾𝑠 varies from ≈ 3 

– 9 for values 0 ≤ 𝛽𝑎 ≤ 1, specified then by the obtained value of factor 𝜃 (see Annex 

E, section 2.2.1). 

The applied shear load over the cell becomes critical (𝑃𝑐𝐵) when reaching the 

shear buckling critical point. This load is common to the base material and the repre-

sentative cell member as shown in Eq. (4.73). Then, the critical elastic shear buckling 

stress of core is given by Eq. (4.74). 

𝑃𝑐𝐵 = 𝜏𝑠𝐵𝐴𝑠 = 𝜏𝑐𝐵𝐴𝑐𝑒𝑙𝑙 (4.73) 

𝜏𝑐𝐵 = 𝜏𝑠𝐵
𝐴𝑠
𝐴𝑐𝑒𝑙𝑙

= 𝜏𝑠𝐵
𝑡𝐿

𝐿2
= 𝜏𝑠𝐵

𝑡

𝐿
= 𝜏𝑠𝐵

�̅�

2
 (4.74) 

Introducing Eq. (4.67) into the last expression, the critical elastic shear buckling 

stress of core is defined by Eq.(4.75), neglecting the contribution of the core walls per-

pendicular to the shear load. 

𝜏𝑐𝐵 = 𝐾𝑠
𝑡

𝐿

𝜋2

𝑡𝐿2
√𝐷1𝐷3

34

= 𝐾𝑠
𝜋2

𝐿3
√𝐷1𝐷3

34

= 𝐾𝑠
𝜋2

𝐿2
√𝐷1𝐷3

34

 
�̅�

2
 (4.75) 

4.4.2.1.4 Analytical results 

A comparison of the different failure modes predicted by the analytical ap-

proaches is presented within this section. Table 4.10 and Table 4.11 shows the pa-

rameters employed for the analytical calculations and the results obtained for the shear 

strength predictions using Eq.(4.64) for 𝜏𝑐𝑅, Eq.(4.66) for 𝜏𝑐𝐷𝐵 and Eq. (4.75) for 𝜏𝑐𝐵. 

Regarding to core design 2 and referring to Figure 4.20.b, the central strut bears most 

of the stresses, and thus, the approximation 𝐿𝑒𝑞 neglects the lateral struts. 

Table 4.10. Core shear analytical strengths: fracture and debonding failure modes 

Pattern 
𝐿𝑒𝑞 𝑓 𝑁 𝐿𝑐𝑜𝑟𝑒 𝐴𝑐𝑜𝑟𝑒 𝜏𝑖𝑛𝑡 𝜏31𝑠 𝜏𝑐𝑅 𝜏𝑐𝐷𝐵 

(mm) (mm) (--) (mm) (m2) (MPa) (MPa) (MPa) (MPa) 

Design 1 6.91 1 5 200 0.02 20 110 0.823 1.414 

Design 2  4.204 1 5 200 0.02 20 110 0.501 1.414 

Reference 50 1 2 200 0.02 20 110 1.430 0.565 
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Table 4.11. Core shear analytical strength: shear buckling failure mode 

Pattern 
𝐷1 𝐷3 𝐷31 𝜃 𝛽𝑎 𝐿 𝐻 𝐾𝑠 𝜏𝑐𝐵 

(Nmm) (Nmm) (Nmm) (--) (--) (mm) (mm) (--) (MPa) 

Design 1 -- -- -- -- -- -- -- -- 1.275* 

Design 2 -- -- -- -- -- -- -- -- 0.875* 

Reference 1433 36388 162.9 44.3 0.226 50 25.4 3.1 3.970 

Note: (*) Only evaluated via numerical approaches  

Figure 4.23 presents the expected failure modes comparing the different theo-

ries stated, where the failure cases due to maximum shear strength of the base mate-

rial (machined cores) and debonding (reference cores) show the minimum strength 

value, meaning a higher probability of occurrence. It is interesting to remark that the 

shear buckling presented for cases 1 and 2 are only represented by numerical ap-

proaches as in section 4.4.2.2. 

 

Figure 4.23. Comparative peak shear stresses among different approaches 

4.4.2.2 Numerical approach 

As shown in section 4.3.2.2, the shear stresses shall be evaluated inde-

pendently through two different simulations:  
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1. Through linear static simulations (without buckling behaviour) 

2. Through non-linear static simulations (with buckling behaviour) 

Thus, the simulation that predicts the minimum critical load, is selected as the 

shear failure load of the core. In both cases, cells based on CFRP sheets are discre-

tised by a mesh of shell elements of size 0.4 mm (CQUAD4, 4-node reduced integra-

tion). Material properties are set by Table 4.2. Border conditions are established in 

correspondence to the analytical models previously presented, in which: for the ma-

chined cores, the top and bottom-line nodes are selected as simply supported, alt-

hough the top nodes only can move in x-direction, and the nodes over the lateral flanks 

are set free; for the reference core, the entire plate edges are set as simply supported, 

and the top nodes only can move in x-direction. 

(a) Core design 1 

 

Reference on node positioning: 

 

 

(b) Core design 2 

 

Reference on node positioning: 

 

 

Figure 4.24. Shear stresses vs. reference nodes extracted from simulations 
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1.  The linear static simulation is analogous to the simulations presented in previ-

ous section 4.4.1.2, for obtaining indirectly the core shear modulus. The results of the 

simulations are given in Figure 4.24, applying different line-loads to the top nodes until 

reaching the base material strength. Shear stresses vs. referenced node position 

curves (green horizontal mid-line) are extracted from the numerical calculations for the 

case of maximum shear strength of the base material. Core design 1 shows a para-

bolic-like curve for shear stress distribution at the mid-plane. In this case, a failure load 

of 16.8 N/mm is extracted, when the base material reaches 110 MPa (base material 

shear strength). For the case 2, the node references are obtained from the mid-plane 

including the centre and the two laterals’ struts. The lateral struts bear significantly less 

load compared to the middle strut from the point of view of the stress shown, as a result 

of a lower bending rigidity. Thus, the highest shear stresses are observed at the centre 

strut, with a failure load of 14.8 N/mm, when the base material top-out 110 MPa. The 

full-walled reference cores present a failure shear load of 71.5 N/mm. The results 

charts are not plotted for being trivial, as the average load is divided by the base ma-

terial area and being of a constant value along the plate as pointed out in section 

4.4.1.2 

2.  In the non-linear static model, the top-line nodes are loaded with a 10 kN line 

load parallel to the x-direction, until the simulation stops. Different nodes are selected 

for evaluating buckling behavior of the plate sheets, as shown in Figure 4.25 

(a) Design 1 (b) Design 2 (c) Reference 

   

Figure 4.25. Schemes of selected nodes for displacement tracking in y-direction 

Figure 4.26 shows schematically the simulated material distortion due to the 

applied load via an isometric rendering, and the corresponding graphs of the node 

displacements obtained from the FE simulations. 
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  (a) Core design 1 

 

 

(b) Core design 2 

 

 

(c) Reference 

 

 

Figure 4.26. Data extracted from the non-linear simulations: Right. Load vs. selected 

node displacement curves. Left. Contour plots of the node displacements in y-direc-

tion 
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Employing node tracking points at opposite sides of the material sheet, Figure 

4.26 represents the node displacement in y-direction for each core case. Figure 4.26.a 

and Figure 4.26.b show the behavior of two opposite nodes selected, both exhibiting 

mirrored behavior accordingly to the zero positioning. This result suggests that only 

one-wave wrinkle is developed in both cases. The instability regime begins at load of 

almost 510 N and 350 N with an estimated last-step load of 530.6 N and 360.63 N for 

cores design 1 and design 2, respectively. In a similar way the last case is studied as 

Figure 4.26.c, which represents the selected nodes tracking of reference cores. Three 

curves begin with zero displacement until the instability load is reached, then they be-

have asymptotically to positive and negative values, which indicates that the wrinkles 

exhibit two wave-length peaks and one dip. A load of approximately 9.875 kN is esti-

mated as the start of the instability region; while a load of 10.046 kN sets when the 

instability of the model is reached. 

4.4.2.2.1 Numerical approach 

Table 4.12 summarizes the results obtained from the simulations, contrasting 

them with the analytical results for the minimum stress attained. The critical load of the 

cell element is given by 𝑃𝑐𝑟𝑖𝑡*. The minimum stresses are predicted for the case when 

reaching the maximum shear strength of the base material (SF: shear strength failure). 

Nevertheless, the analytical approaches predict that the debonding failure (DB) has 

also a higher probability to occur compared to the failure due to shear strength as 

𝜏𝑐𝐷𝐵 < 𝜏𝑐𝑅 (Table 4.10), in particular for the reference case. Moreover, the buckling 

behavior obtained by non-linear static simulation is predicted of less probability to oc-

cur compared to the other failure modes. 

Table 4.12. Core shear strengths according to numerical and analytical approaches  

Pattern 
𝐿 𝑃𝑐𝑟𝑖𝑡* 𝜏𝑐* 𝜏𝑐** 𝜏𝑐*** Expected 

failure mode (mm) (kN) (MPa) (MPa) (MPa) 

Design 1 20 0.51 1.275 0.84 0.823 SF 

Design 2  20 0.35 0.875 0.74 0.501 SF 

Reference 50 9.875 3.950 1.43 0.5651 DB 

Notes: (*) Non-linear static simulation, (**) Linear static simulation, (***) Analytical, (1) 

considering debonding failure mode 
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4.5 Experimental tests 

To evaluate the mechanical properties as the stiffness and the strength of the 

proposed cores, mechanical tests are carried out following the guidelines of ASTM 

C365 (Flatwise Compressive Properties of Sandwich Cores) [175] and ASTM C273 

(Shear Properties of Sandwich Core Materials). In both cases, a Zwick / Roell Z150 

screw-driven universal testing machine is used to carry out three tests on each core 

sample at controlled room temperature. 

4.5.1 Compressive tests 

Compressive tests are carried out using the test set up shown in Figure 4.27. 

Two steel compression plates are used to transmit the stress to the specimen. The 

lower plate is placed on a spherical bearing to counteract misalignments due to lack of 

parallelism between the faces of the stabilized panel incorporated during the manufac-

turing process, and thus, promoting a better distribution of forces along the load-bear-

ing core columns. The crosshead speed is set to 0.5 mm/min and the strain is obtained 

by displacement transducer HBM W2TK. Photographs of the test samples are given in 

Figure 4.5. Three specimens of each core case are tested, and the main sample di-

mensions comprise 100 x 100 x 25.4mm. 

 

Figure 4.27. Set-up used for compression tests 
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4.5.1.1 Compressive test results 

The compressive stress vs. strain of the design 1 cores is represented in Figure 

4.28 as an example of study; while Figure 4.29 represents a matrix of photographs at 

selected representative values, evidencing the behaviour of the core against compres-

sive loads.  

 

Figure 4.28. Measured compressive stress–strain response of design 1 cores 

The initial response of the core is almost linear, up to the peak stress, with a 

small load drop after point I, suggesting a slight misalignment between the loading 

plates (lack of parallelism and repositioning of the patella) which causes prematurely 

local failure of columns due to the inhomogeneous load distribution, also evidenced by 

the local drop of the average young's modulus. Then, the load slope changes gradually 

due to the lower number of columns bearing the compressive loads before reaching 

the maximum compressive strength of the cores, evidencing torsional buckling failure, 

when observing the rotation of the column flanks as at point II in Figure 4.29. The non-

linearity observable in the change of the local Young's modulus between point I and II 

reinforces the theory of buckling failure. Later, core collapse occurs when the maxi-

mum load capacity is reached, at point III, in which most of the remaining core columns 

collapse. The load drop is not sudden, but gradual, also suggesting a failure due to an 
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elastic buckling case. After the main drop, the stress reaches a plateau due to the local 

opposition of the collapsed columns and, later, the stress continues to drop with further 

crushing of the material (points IV-VI). Finally, local failure events occur progressively, 

leading to a decrease in the overall core strength, following a non-linear regime due to 

the subsequent collapse of the remaining strut material.  

 

Figure 4.29. Photographs associated to selected points: compressive behaviour of 

design 1 cores 

The obtained compressive stress 𝜎33 vs. 𝜀33 of the proposed cores are plotted 

in Figure 4.30, for the best performance samples. The curves show in all cases an 

elastic response at the beginning of the tests, with a small change in the load slope 

before the collapse of the structures, denoting the onset of elastic buckling of the CFRP 

structures. In most cases, premature local failures of single columns are observed due 
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to possible stress misdistribution along the core thickness, potentially attributable to 

the manufacturing process and test set-up. After the peak and collapse of the structure, 

in all cases the stress progressively decreases until reaching a plateau, where the 

already collapsed material starts to be compressed. Then, the stress decreases with 

further crushing and strain. 

         

Figure 4.30. Compressive stress–strain response of square–honeycomb cores 

As noticed in Figure 4.30, core design 3 showed the best compressive strength 

performance compared to the others, with a compressive strength of around 2.6 MPa. 

The worst performance is observed for both the reference core and design 2 with a 

peak value in the order of ≈ 2.25 MPa and 2.2 MPa, respectively. The maximum com-

pressive strength of the proposed cores showed average peak values in the order of 

2.4 MPa. The resume of the results is presented and discussed in the following section. 

4.5.1.2 Discussion 

Table 4.13 summarises the results obtained from the compression tests and the 

model predictions. The compressive strength of the cores is also exhibited in Figure 

4.31 as bar graphs for comparison. The failure estimated by theoretical approaches 

comprised are of torsional buckling behaviour for the machined cores, and of plate 

buckling for the reference core.  
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Table 4.13. Analytical, FEM and experimental results from compressive tests 

Core 
type  

Analytical   Numerical   Experimental  

𝜎𝑐𝑝𝑘 

(MPa) 

𝐸𝑐 
(GPa) 

 𝜎𝑐𝑝𝑘 

(MPa) 

𝐸𝑐 
(GPa) 

 𝜎𝑐𝑝𝑘 

(MPa) 

𝐸𝑐 
(GPa) 

Obs. 
mode 

1 2.83 1.40  2.94 1.59  2.173 ± 0.279 0.72 ± 0.02 TB 

2 2.75 1.56  2.81 1.93  2.131 ± 0.151 0.61 ± 0.01 TB 

3 2.88 1.38  2.98 1.39  2.514 ± 0.123 1.12 ± 0.01 TB 

Ref. 2.07 1.62  2.19 1.57  2.198 ± 0.056 0.54 ± 0.02 PB 

Note: TB = torsional buckling; PB = plate buckling 

Although the models predict the behaviour reasonably well by the analytical and 

numerical results, the results are lightly overestimated. Nevertheless, in terms of the 

Young's modulus, the models overestimated the experimental result from two to three 

times, which is attributed to imperfections in the manufacturing process and test set-

up, leading to a lack of parallelism between faces, perpendicular misalignments be-

tween core walls and faces, etc. Furthermore, since sandwich panel specimens are 

not ideally flat, compressive loads are not perfectly distributed over the panel faces, 

leading to local failures (small drops in load-displacement charts until reaching the 

main failure load) as previously seen in Figure 4.30. These premature failures may 

cause an overloading of the remaining struts, inducing a larger straining followed by 

collapse of the panel at a lower load value than the estimated load value. The discrep-

ancy between models and experimental data is found as follows: the larger induced 

straining is not considered in the models, leading to a lower elastic modulus than pre-

dicted; while the predicted critical load, considered the collapse of all columns at the 

same time, as reaching the estimated critical load, and therefore, the predicted value 

is higher than the obtained in experiments. Nevertheless, good agreement is found 

between the numerical and analytical model predictions. It is important to highlight the 

ideal case, where cores could reach high load capabilities (i.e., when reaching full po-

tential), considering a defect-free processing and assembly of the material. 

Figure 4.31 compares the maximum compressive strength measured among 

the proposed square honeycomb cores. The limit of the experimental results agrees 

well with the analytical and numerical predictions. The variability between the results 

is attributed to several factors, mainly related to the misalignments during the manu-

facturing process and the configuration of the test set-up.  
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Figure 4.31. Maximum compressive stresses according to analytical, FEM and exper-

imental 

In particular, for design 2, when using the theoretical Euler buckling load (see 

section 2.2.3.2) applied to the slender side columns, a failure buckling load of 𝑃𝑐𝑟𝑖𝑡 =

𝜋2𝐸𝐼

(1∙𝐻)2
=
𝜋262600∙0.04

(25.4)2
= 38.24 N is attained. Assuming that the stresses are distributed ho-

mogeneously along the cell, in terms of stresses over the base material of the slender 

plate, a stress of 𝜎𝑠 =
38.24

1.745∙0.65
= 33.7 MPa is calculated. If this stress is extrapolated 

to the base material within a cell, a load 𝑃𝑐 = 33.7 ∙ 𝐴𝑆 = 322.6 N is attained. Dividing 

the last result by the cell area 𝐴𝑐, the buckling stress of the slender plates in terms of 

stress over the cell is 𝜎𝑐 = 0.8065 MPa. This result means that when the loaded cell 

reaches the value 0.8065 MPa of stress, the narrow side plates may buckle. This esti-

mation is in accordance with the experimental charts on Figure 4.30 (design 2 curve), 

where a larger drop in stress of around ≈ 0.8 MPa is shown. Then, the drop in stress 

is attributed to the narrow plate buckling. Furthermore, Figure 4.32 shows schemati-

cally the transition through instability of design 2 cell (Euler buckling of the narrow lat-

eral plates, and later torsional buckling of the cross-shaped column).  
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Figure 4.32. Top view of FE renders of design 2 struts in a cell member showing the 

transition through instability 

Among the different proposals for failure models, it is clearly seen that the lowest 

estimated strength (in this case, also the lowest critical load) is attributed to torsional 

buckling, when calculations are compared with the experimental data (Table 4.13). 

Figure 4.33 shows a top view of the FE rendering with 4 cells working at the same time 

when the core is subjected to compression loads. The red arrows show the turning 

trend when reaching the instability load. 

 

Figure 4.33. Top view of FEM renders of four struts of core design 1 showing torsional 

buckling 

As explained in section 4.3.2.1.5, reference cores do not satisfy the border con-

ditions for pure torsional buckling behaviour. The snapshots presented in Figure 4.34 

support the hypothesis of plate buckling, showing that the buckling of the front plates 

is not coupled with the rest of the structure behaviour at the failure step, because the 

concavity of the buckled plates is oriented to the same side, contrasting the coupled 

and coordinated behaviour shown in torsional buckling cases. 
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Figure 4.34. Photographs of reference core showing failure behaviour 

Table 4.14 compares the experimental tests of the three proposed core and 

contrasts them with their respective numerical results. The first column shows the mag-

nified photographs of the individual cells with a white straight tracking line, with focus 

on the initial position of the sample at the beginning of the compression test. The sec-

ond column shows the instability of the columns an instant before the collapse of the 

structure. The red tracking lines help to define and contrast the shape of the edge 

laminate sheet during this stage. The difference in the light reflection upon the back-

ground material sheet allows discerning the displacement and deformation of the struc-

ture. The third column presents FEM sketches of the cell’s struts showing the instability 

of the cells. The failure denoted a torsional buckling behaviour and, therefore, sup-

ported the proposed hypotheses. 
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Table 4.14. Comparison matrix of cell´s struts during loading. Rows: (a) Design 1 sam-

ples. (b) Design 2 samples. (c) Design 3 samples. Columns: (1) Photographs at the 

beginning of compressive test. (2) Photographs before failure. (3) FEM renders at fail-

ure step 

 (1) (2) (3) 

(a) 

  
 

(b) 

   

(c) 
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4.5.2 Shear test  

Shear core samples are fixed to prismatic steel plates with a two-component 

epoxy glue. The standard ASTM C273 defines a minimum length-to-thickness ratio of 

12:1, aiming a desired shear failure of the samples by plate shear tests. The employed 

ratio in this work is in average 7.9:1. Consequently, a small out-of-plane load case is 

led of nearly by 4.36% higher than the expected for the suggested case. Nevertheless, 

it has been proven that even smaller ratios led to suitable results [176]. The test set-

up is schematically shown in Figure 4.35 where it can be observed that the load line is 

kept within the diagonal between opposite corners of the core, according to the stand-

ard recommendations.  

 

Figure 4.35. Rendering scheme of the shear test set-up 

The crosshead speed employed is set by 0.5 mm/min and a displacement trans-

ducer HBM W2TK is implemented for measuring the straining. Three samples are 

tested, and Figure 4.6 provides photographs of the test samples, where the main sam-

ple dimensions comprise 200 x 100 x 25.4mm. 

4.5.2.1 Shear test results 

In-plane shear tests responses as 𝜏31 vs. 𝛾31 of the proposed cores are pre-

sented in Figure 4.36.  
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Figure 4.36. Shear stress–strain response of square–honeycomb cores 

Analyzing the curves in Figure 4.36, a linear response is observed at the begin-

ning of the curves in all the evaluated specimens, followed by a gradually change in 

the slope until rupture, typically expected for this kind of fiber orientation during shear 

loading [170]. Core design 1 and 2 presented both a significant deformation, with a 

decrement on the bearing of stresses and an increment of the strain, mostly occa-

sioned by bending of the core struts. Due to the slenderness of the struts of core design 

2, a larger deformation is observed. The failure of design 1 and 2 samples is attained 

after reaching a maximum deformation, where the cores failed in a slower and softer 

manner while reaching the maximum shear strength of the CFRP base material. The 

shear strength reached is around 0.54 MPa and 0.33 MPa, respectively. In contrast to 

them, reference cores exhibited catastrophic failure in all samples, dominated by 

debonding of the core from skins. The maximum shear strength for the reference case 

is of around 0.45 MPa. Despite presenting a larger number of sheets bearing the shear 

load, the slope exhibited by cores design 1 and 2 is smaller than the reference, evi-

dently coming about because a larger deformation is experienced by the machined 

struts due to the bending effect. The latter means less shear stiffness and therefore 

more straining. Furthermore, the WJC manufacturing method may also bear on the 

overall component performance.  
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Figure 4.37. Montage of photographs showing the shear response of core design 2 

A series of photographs of a core design 2 sample at different deformation levels 

is given by Figure 4.37, as a good example for showing the effect of bending induced 

by the shear loads. The snapshots show an initial elastic regime in which bending of 

the small columns takes place before the first signs of rupture are observed, after 

reaching the maximum bearable load. Remarkably, the failure does not occur at the 

same time on all the columns, but it happens gradually, suggesting a misalignment in 

the support of the loads, possibly due to the non-automated manufacturing process 

and test set-up.  

4.5.2.2 Discussion 

Table 4.15 compares the shear strength and moduli from the analytical and nu-

merical predictions, and the experimental results. Both analytical and numerical mod-

els are reasonably in agreement, however in all cases they are moderately over esti-

mated. The discrepancy among the experimental data and the predictions can be at-

tributed to imperfections incorporated while manufacturing the samples or during the 

test set-up (e.g., misalignments of shear plates or lack of parallelism between core 
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sheets and shear plates), which led to not perfectly distributed loads and to local fail-

ures. These issues may considerably affect the performance of the cores, especially 

of the core design 2 that presented the higher number of machined geometries, and 

the smaller columns are more susceptible to local bending stresses. The case of ref-

erence cores exhibited debonding failure, in correspondence with the predictions. The 

photographs confirm this failure mode, with small cracking bands at the bottom of the 

sample before the sudden rupture (Figure 4.38). The smaller bonding surface influ-

ences the mechanical performance of the core, causing an abrupt premature failure 

(as seen in shear charts in Figure 4.36). In this case, the sample is de-attached from 

the support glued surface. 

Table 4.15. Resume of analytical, FEM and experimental results from shear tests 

Core 
type  

Analytical   Numerical   Experimental  

𝜏𝑐𝑝𝑘 

(MPa) 

𝐺𝑐 
(MPa)  

𝜏𝑐𝑝𝑘 

(MPa) 

𝐺𝑐 
(MPa)  

𝜏𝑐𝑝𝑘 

(MPa) 

𝐺𝑐 
(MPa) 

Obs. 
mode 

1 0.823 50.55  0.84 50.59  0.536 ± 0.008 52.52 ± 9.30 SF 

2 0.501 23.25  0.74 23.26  0.334 ± 0.011 17.14 ± 2.14 SF 

Ref. 0.565 46.28  1.43 42.68  0.453 ± 0.027 50.57 ± 1.14 DB 

Note: DB = debonding failure; SF = shear failure 

 

Figure 4.38. Photographs showing the debonding failure mode of reference cores 

The elastic shear moduli of the cores are in good accordance with predictions 

(Figure 4.39). The analyses are addressed by introducing shear loads as the model 
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proposed in section 4.4.1. The analytical models are in good accordance with the nu-

merical predictions, and they are validated as well by the experimental tests. The best 

performances are shown by reference and design 1 cores with average values of 50.57 

MPa and 52.52 MPa, respectively, although reference cores showed less deviation 

among experimental values. Core design 1 denotes a higher rigidity, less influenced 

by bending in comparison with core design 2. The deviations of the experimental val-

ues are attributed to unexpected fabrications issues, less remarkable by reference 

cores that presented fewer machining stages during the manufacturing process. The 

predictions lightly underestimate the experimental results regarding to reference cores, 

attributed to the approximations carried out, in which the cross CFRP sheets are not 

considered and may influence the calculations. 

 

Figure 4.39. Maximum shear modulus according to experimental tests, contrasted by 

FEM and analytical models 

Furthermore, both core design 1 and 2 showed a bending-shear deformation 

(Figure 4.40 and Figure 4.41) followed by a shear failure, also predicted by analytical 

and numerical models, despite the discrepancy contrasted by the experimental results. 

The failure due to buckling of the plates is considered as well in the models, but none 

of the specimens exhibited it. A comparison between FE predictions of the deformation 

of core design 1, is shown in Figure 4.40 in which the shear strain at  𝛾 = 0.045 is 
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observed. The original position of the struts is represented by a shadow behind the FE 

sheet. In this case, the deformation results from a superposition of shear and bending 

loads. No wrinkling of the core cell walls is predicted. Moreover, good agreement is 

seen between the FE predictions and core design 1 deformation at 𝛾 = 0.03 (Figure 

4.41). The bending effect leads to a further distortion of the struts, also remarkable in 

Figure 4.37. 

(a) 

 

(b) 

 

Figure 4.40. (a) Photograph and (b) FE rendering. Comparison for core design 1 de-

formation 

(a) (b) 

 
 

Figure 4.41. (a) Zoom-in into a photograph and (b) FE rendering. Comparison for core 

design 2 deformation 
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4.6 Concluding remarks 

In this chapter, different types of ultra-lightweight cores are designed, manufac-

tured, and tested, along with their mechanical properties’ predictions, compressing the-

oretical and numerical approaches (elastic response and failure). The core base ma-

terial is from a vacuum infused CFRP woven plate in a disposition of [0/90] °. The 

proposed geometries are obtained from CAD models later used as “g-code” for the 

WJC technique, in which cavities are machined within the CFRP sheet. The cores are 

assembled using the slotting-interlocking method. The core density is maintained be-

low 48 kgm-3 in all cases as a primary target. 

On the one hand, the compression response of each core is evaluated and com-

pared to that of a full-walled reference core. FE models are employed to support the 

theoretical approaches, which are in good agreement in all cases. The analytical and 

numerical approaches overestimate the core compressive strength, although the core 

out-of-plane stiffness is in excellent correspondence. The average compressive 

strength of the cores is in the range of 2.2 MPa – 2.7 MPa, while the compressive 

elastic modulus is in the range of 0.72 MPa – 1.12 MPa. The failure is governed by 

torsional buckling behavior in all machined cases, and of plate elastic buckling in ref-

erence cores. The discrepancy between experimental results and model predictions is 

attributed to imperfections in the manufacturing process of the main laminate compo-

site material and the possible unequal load distribution during sample testing, that led 

to local premature failures. 

On the other hand, the results obtained from theoretical approaches used to 

study the shear behavior due to the deformation of the cores, are in good agreement 

to the experimental tests. The FE calculations also helped to understand the displace-

ment performed by the CFRP sheets, validating the theory of a Timoshenko-kind 

beams. The average shear properties of the cores are in the range of 0.33 MPa – 0.54 

MPa, and of 17.14 MPa – 52.52 MPa, as core shear strength and modulus, respec-

tively. The failure mode is dominated by shear failure of the base material for the ma-

chined cases, and of debonding of core-skin interphase for reference cores. Imperfec-

tions in the manufacturing process and/or test set-up led to unequal loading occasion-

ing premature failures. 

Remarkably, the hollow cores with interconnected holes allowed the material to 

be ultra-lightweight and gives the cores great potential for multifunctional applications 
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(e.g., heat transfer, embed foams, cables, or electronics). The number of sheets is an 

important point to review in structures that are made from non-monolithic parts. The 

glued surface ratio must be considered, not only by shear loading cases but also by 

flexural responses. The competitiveness of these cores will be analysed in Chapter 7 

of this dissertation. 

Although the catenaries-like shapes are thought firstly as an optimal shape of an 

arch for compressive loading, they do not have such as a large influence in the overall 

performance of the cores, when using CFRP sheets oriented at [0/90] °. The fibre ori-

entation plays a fundamental role when CFRP structures are used. It should be noted 

that the fibre orientation employed in shear loading is better implemented when the 

loading case is parallel to the fibre orientation. Based on that, an improvement for this 

kind of material performance would be by the coupling of two layer of [±45] ° woven 

carbon fibre between a woven layer oriented at [0/90] °, with a small lack of out-of-

plane performance. Normally, the fibres are the component that withstand most of the 

load in a fibre reinforced composite material. Under pure shear loading, the maximum 

shear stresses are at 45° [170]. Therefore, if the orientation of the fibres is set at [±45] 

°, i.e., parallel to the maximum loads, this type of fibre orientation would enhance the 

shear performance of the proposed cores. 

Nevertheless, good specific properties in terms of modulus and strength are 

achieved. Further improvement for minimizing the manufacturing imperfections of the 

material is needed in order to overcome some lack in performance. The reported man-

ufacturing method, mechanical measurement and modeling provide a first step for de-

veloping new cores for lightweight design, attempting to expand the strength-density 

chart for honeycomb cores [101]. The interlocking method using reinforced polymeric 

materials showed to be a feasible production method to obtain light weight competing 

materials for sandwich applications. This method has many advantages related to the 

ease of material processing.  

Next chapter explores an additional kind of ultra-lightweight cores as lattice ma-

terials in which the fiber orientation (i.e., throughout the CFRP rods) is set to 45 °, in a 

way to enhance mechanical properties either by compression or shear loading, while 

still maintaining a very low density.  



5. Ultra-lightweight lattices made from CFRP rods                                                 135 

 

5 Ultra-lightweight lattices made from CFRP 

rods 

For several years now, lattice-like structures have been developed as an alterna-

tive to different cellular topologies such as honeycombs cores [177], for producing 

lighter and stronger open-structured materials. Originally based on metals such as al-

uminium alloys or titanium alloys [27,125], nowadays lattice materials are gradually 

becoming CFRP-based materials [22,103], taking advantage of their high strength-to-

weight and high stiffness-to-weight ratios. 

As indicated in previous chapters, the fibre orientation plays a fundamental role 

in CFRP structures. The common loading cases on sandwich panels are of out-of-

plane compressive loading and shear loading (see Chapter 3). Thus, it is required to 

find a configuration, in which both compressive and shear properties are less maxim-

ised. Hence, in this chapter the proposed lattices-based cores are manufactured from 

pultruded CFRP rods made from unidirectional fibres. The rods selected are of three 

different standard diameters for attaining core densities, ranging 5.3 – 48 kgm-3. The 

investigation in this chapter comprises out-of-plane and plate shear core properties´ 

estimations, and their failure mode predictions, in which buckling and maximum 

strength dominate the compressive case, while buckling and debonding failure modes 

govern the shear loading case. The predictions are supported by FE analyses, and 

then contrasted favourably with experiments. 

5.1 Literature review 

The search of tailored periodic materials [118] aiming the use of minimal amount 

of raw materials has led researchers to focus on lattices materials for attaining strong 

and lightweight parts. Three dimensional lattice structures take advantage of position-

ing the base material where it is needed and its open-cell characteristic as well. They 

are defined as materials with a connected network of struts, in a similar manner as how 

foams are interconnected. Thus, two forms of structures are found within this kind, 

whether bending-dominated or stretch-dominated (i.e., tension or compression-domi-

nated) structures. The first mentioned are typified as lattices with very low-connectivity, 

where cell edges easily bend against loading, which leads to a very low core modulus 
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or strength. In contrast to them, stretch-dominated structures present a different struc-

tural configuration (as fully triangulated lattices) that leads the struts to be pulled or 

pushed rather than bended, which results in a structure with a higher modulus or 

strength compared to bending-dominated structures [23].  

Low-weight 3D-lattices structures with high mechanical performance represent a 

manufacturing challenge, mainly due to the necessary trusses interconnections to ob-

tain stretch-dominated structures and its complexity for accessing the part. Tradition-

ally, metal-based sandwich lattices were commonly achieved by different techniques 

based on drilling, folding and welding [178–180]. Other methods implied different ar-

rangements of metal wires, based on several fabrication steps as weaving or bending, 

welding, and later a heat treatment [181,182].  

Recent approaches on manufacturing 3D-lattices materials for sandwich panels 

applications, explored the implementation of additive manufacturing (AM) as a suitable 

way to use metallic-based or polymeric-based base materials for obtaining lightweight 

cores. In this context, a commonly used unit cell for lattice structures is implemented 

as Body-Centered Cubic (BCC), due to its simplicity and similar or better mechanical 

properties compared to conventional honeycomb cores [183]. Smith [133,184] studied 

the compressive behavior of BCC and BCC-Z, the latter present also vertical pillars on 

the vertical direction. By means of Selective Laser Melting (SLM) of 316L stainless-

steel, different 3D cores were obtained with relative densities �̅� ranging from 3.5 to 

13.9 % (i.e., 280 – 1112 kgm-3, if one employs 8000 kgm-3 as stainless-steel density) 

for the BCC and from 4 to 15.9 % (i.e., 320 – 1275 kgm-3 in absolute values) for BCC-

Z, presenting elastic moduli ranging from 10.6 to 207.5 MPa and from 84.6 to 2273.2 

MPa, respectively. Furthermore, polymeric structures such as 3D-printed BCC made 

by Fused Deposition Modeling (FDM) have been studied by Tahseen [185]. Several 

models using Neural Network (NN) algorithm and Finite Element Analyses (FEA) were 

carried out in a way to predict the compressive elastic properties of the BCC unit cells 

based on Acrylonitrile Butadiene Styrene (ABS), with different aspect ratios. Liu [186] 

investigated the mechanical properties of 3D-printed BCC unit cells, based on Poly-

lactic Acid (PLA) while changing the printing angle for different aspect ratios. The peak 

compressive strength and Young’s modulus of the printed lattice which printing path 

was parallel to the applied load, were 37.6 % – 65.3 % and 11.4% – 39.6% higher 

compared to the integrated structured, where the filament has an angle of 45° with 
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respect to the applied load, concluding the importance of taking advantage of the ani-

sotropy of the base material. 

Regarding fibre-reinforced composite materials, several studies incorporated car-

bon fibre reinforced polymers as from machined laminates as base material for manu-

facturing pyramidal lattice structures (i.e., considering only the half of a BCC unit cell) 

[22]. Consequently, lattice cores were also studied by Xiong and Vaziri [103,151], who 

obtained pyramidal truss structures from unidirectional carbon/epoxy prepregs ori-

ented at [0/90] ° and processed by hot-press compression moulding, with 45 ° mould 

angles. Relative core densities ranging 1.25 – 4.7 % or 19.37 – 72.85 kgm-3 in absolute 

values (employing 𝜌𝑠 = 1550 kgm-3) were obtained for different numbers of prepreg 

plies through thickness and evaluated in out-of-plane compressive tests. The core 

compressive moduli were obtained in the range 45.8 – 241 MPa. Concerning plate 

shear tests, the relative core densities were evaluated in the range of 0.64 – 2.83 % or 

9.92 – 43.86 kgm-3 in absolute values (employing 𝜌𝑠 = 1550 kgm-3), attaining core 

shear moduli in the range from 9.53 to 58.93 MPa. Moreover, different failure modes 

were observed during tests depending on core densities, in which buckling of the struts, 

fracture of the base material and delamination-debonding governed the strength of the 

cores. Similar failure mode behavior was noticed either by out-of-plane and plate shear 

tests. Other significant works have been carried out focusing on CFRP octet-truss 

structures (i.e., considering the unit cell as two opposite pyramidal lattice structures 

connected by it bases and not by it tops as in BCC). By using snap-fit nodes, Dong 

[187] manufactured CFRP octet-truss lattices with relative core densities of 1.7 – 16 % 

or 24.48 – 230.4 kgm-3 in absolute values (employing 𝜌𝑠 = 1440 kgm-3) reaching peak 

out-of-plane elastic modulus in the range of 75 – 983 MPa. The dominant failure mode 

was delamination of the struts, although Euler buckling and plastic fiber-micro buckling 

were also identified, reaching out-of-plane compressive strengths of 0.6 – 9.89 MPa. 

Only little research can be found in the field of non-laminate-based lattices, par-

ticularly for exploding BCC-like CFRP-based structures, which provides suitable space 

for further investigations, and this will be the focus of this chapter. The scope for the 

upcoming sections is set on ultra-lightweight cores based on CFRP rods, employing 

BCC-like unit cells as lattice structures, and targeting core densities below 48 kgm-3 

[24]. The investigation comprises:  

1. Base material selection and features description. 

2. Analytical core cell design. 
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3. Analytical and numerical approaches for mechanical properties predictions ac-

cording to out-of-plane compressive and plate shear loading cases, including 

failure modes studies. 

4. Experimental tests and the respective model validation.  

5.2 Materials and design 

Sandwich panels are provided from the UniBwM labs based on BCC-like lattice 

structures. The base materials are prefabricated CFRP rods and multi-laminate woven 

carbon fibre cloth. The core densities are in the range from 8.6 to 49 kgm-3. 

5.2.1 Materials 

The base material employed for manufacturing the lattice cores consists in an 

array of CFRP rods type T300 fibres/epoxy of density 1.55 gcm-3 (corroborated by lab 

measures), comprising three different diameters: 0.5 mm, 1 mm, and 1.5 mm. Table 

4.1 shows the composite rods mechanical properties employed for calculations [188]. 

Figure 5.1.a is taken as local coordinate references for the rods.  

(a) (b) 

 
 

Figure 5.1. Local coordinate systems for (a) rods and (b) skins 

Table 5.1. Mechanical properties of the CFRP rods employed for calculations 

Rod  
elastic  
modulus 
𝐸1𝑠 

(GPa) 

Fiber  
volume 
fraction 
𝜑𝑓 

(%) 

Rod shear 
modulus* 
  
𝐺12𝑠   

(GPa) 

Rod  
Poisson´s 
Modulus* 
𝜐21𝑠 = 𝜐12𝑠  

(--) 

Rod  
compressive 
strength 
𝜎1𝑠
−  = 𝑅1𝑠

−  

(MPa) 

Rod 
shear  
strength 
𝜏12𝑠 

(MPa) 

115 65 5.8 0.016 – 0.25 450 90 

Note: subscript s represents the parent material. (*) Approximated via Eq. [2.15 – 2.17] 
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The preform of the sandwich skins consists in four layers of woven T300-3k 

(Torayca) carbon fibre 2/2 twill fabrics, combined with epoxy resin and hardener “type 

L” (R&G Faserverbundwerstoffe GmbH). The resulting CFRP base material for the 

skins has an average thickness of t = 0.8 ± 0.05 mm (lab measured), and an average 

fibre volume content of 55%. Although the base material density is predicted of 1.485 

gcm-3 by theory (see Annex C for further details), it was measured in the laboratory a 

resulting average density of 1.422 gcm-3, inferring manufacturing deviations such as 

possible voids due to entrapped gas incorporated during the manufacturing process. 

The CFRP skins´ mechanical properties are pre-estimated based on the classical lam-

inate theory (see Chapter 2) and shown in Table 4.2 (see Annex B for further details). 

Figure 5.1.b is taken as local coordinate references for the face sheets. 

Table 5.2. Theoretical elastic properties of the woven composite material T300/epoxy. 

Composite  
elastic  
modulus  
𝐸2𝑠 = 𝐸1𝑠  

(GPa) 

Composite  
shear 
modulus  
𝐺12𝑠   

(GPa) 

Composite 
Poisson´s 
modulus 
𝜐12𝑠 = 𝜐21𝑠  

(--) 

Fiber  
volume 
fraction 
𝜑𝑓 

(%) 

Composite 
compressive 
strength 
𝑅2𝑠
−  = 𝑅1𝑠

−  

(MPa) 

Composite 
shear 
strength 
𝑅12𝑠 

(MPa) 

67.78 4.06 0.028 55 527.44 110 

Note: subscript s represents the parent material 

5.2.2 Lattice core design 

Lattice properties depend upon three main factors: the raw materials, the grade 

of connectivity and shape of the truss (e.g., bars, beams, or sheets), and its relative 

density �̅�. The unit cell defines the minimal periodic unit that describes the main struc-

ture and determinates the mechanical and physical properties of the main structure. In 

BCC lattices structures (Figure 5.2.a), the rods have a connection node at the middle 

of the unit cell similar to 3D-Kagomé structure [189], but with four trusses. Normally, if 

the lattice structure is fabricated using a 3D-printer and based in metallic raw material 

as titanium alloys [190], the connection node is made as a part of the main structure. 

Whether the lattice architecture is fabricated using metal wires [181] or expanded metal 

[177], the cross-points between the trusses (or the trusses and the skins depending on 

the case) is by brazing. Usually, wire-woven bulk structures present slender wire 
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trusses that are not straight parallel to the line load despite of having a minimum de-

flection, making the structure even more susceptible to Euler buckling failure mode. 

On the other hand, CFRP braided stitched lattice cores have a large nodal connectivity 

and greater debonding strength, although a fibre volume content of about 52% [191]. 

As seen previously, the fibre volume content defines the material mechanical proper-

ties while bearing the load [8]. In this work, BCC-like lattice core materials (Figure 

5.2.b) made from CFRP pre-fabricated pultruded trusses with 65% fibre volume con-

tent are studied. The connection node is designed in a way that all the trusses meet to 

each other at the mid-plane of the unit cell, avoiding the common point of the formal 

BCC structures, while displacing the trusses from the common centre. The BCC-like 

design also allows a higher densification of the unit cell for smaller cell sizes and 45° 

orientation angles, a clear difference when compared to pyramid-like cells that present 

bigger unit cells to set the trusses at the same angles [22].   

(a) BCC unit cell 

 

 

 
 

(b) BCC-like unit cell 
 
 

  

Figure 5.2. Sketches examples of lattice unit cells  

In order to have a better visualization of the defined unit cell and the lattice core 

proposed, Figure 5.3 represents sketches of an array of 3 x 3 lattice core. The repetitive 

unit cell is defined as the one that has dimensions repeated periodically throughout the 

length and width of the core. In this work, it has been considered an equivalent unit 

cell that coincides with the midpoint of the distance between the center of the rods in 

projection to the lower and upper planes of the core (Figure 5.3.b  and Figure 5.3.c). 
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Figure 5.3. Sketches of proposed lattice core in an array of 3 x 3 

 

Figure 5.4. Sketch of unit cell parameters 

The unit cell design parameterization for truss positioning is defined by variables 

as: the rod diameters Ø (also noted as d), the director angle ω and the cell height H 

(a) Perspective view  (b) Top view  

 

 

(c) Front view 
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(Figure 5.4). Furthermore, tree different rod diameters as 0.5 mm, 1 mm, and 1.5 mm 

are used for studying the behavior of different core densities as the unit cell size is 

maintained constant. The relative density �̅� of the cores is previously calculated using 

the average weight of the CFRP rods (with circular cross sections) and the unit cell 

volume. The expected core relative density �̅� is below 0.03 kgm-3 or 𝜌𝑐 = 48 kgm-3. 

According to lab-measurements (Table 5.3), the real core density presents little dis-

crepancies from the analytical prediction, attributed to the added weight incorporated 

by the glued connections between the rods, and rods to skins (see Annex C). The 

cores with 0.5 mm rods show a larger glue residual as a result of the finishing process. 

Table 5.3 summarizes the unit cell´s main dimensions and core densities at-

tained. The orientation angles 𝛼 and 𝜔 are proposed in this work to be 45°. The cell 

height H is fixed to 25.4 mm, while the width W and the length L are proposed to be 

equal and dependent on the core height H as 𝐿 = 𝑊 =
√2

2
𝐻, resulting in a unit cell size 

of 17.96 mm. 

Table 5.3. Unit cells mean dimensions and core densities employed for analyses 

Ø  L  W  H  𝛼 𝜔 𝜌𝑐
∗  𝜌𝑐

∗∗  

(mm) (mm) (mm) (mm) (°) (°) (kgm-3) (kgm-3) 

0.5 17.96 17.96 25.40 45 45 5.34 8.66 

1 17.96 17.96 25.40 45 45 21.34 22.92 

1.5 17.96 17.96 25.40 45 45 48.03 49.76 

Notes: (*) Theorical value. (**) Lab-measured 

The lattice-based CFRP sandwich panels exhibited the designed architecture. 

Arrays of 3 x 3 cells are shaped into square samples for the compressive tests with a 

size of 65 mm by 65 mm and 25.4 mm in height (Figure 5.5). 

 

Figure 5.5. Compressive samples with different rod diameters 
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Moreover, rectangular samples having arrays of 10 x 3 cells are employed for 

the shear tests with a size of 180 mm by 65 mm and 25.4mm in height (Figure 5.6). 

 

Figure 5.6. Shear samples with different rod diameters 

5.2.3 Core relative density estimation  

The main parameters that influence the geometry of the unit cell include: the 

director angles 𝛼 and 𝜔, and the strut length l as sketched in Figure 5.4. The strut 

length could be also indirectly obtained by the cell height (i.e., core thickness). The 

general expression for the cross-sectional area of the unit cell 𝐴𝑐𝑒𝑙𝑙 is given by multi-

plying both sizes L and W of the cell as Eq. (5.1). The height H of the unit cell is defined 

as Eq. (5.2) while the cell volume 𝑉𝑐𝑒𝑙𝑙 is obtained as Eq.(5.3) . 

𝐴𝑐𝑒𝑙𝑙 = 𝐿𝑊 = (2𝑙 cos𝜔)2 cos 𝛼 sin 𝛼 (5.1) 

𝐻 =  2𝑙 sin𝜔 (5.2) 

𝑉𝑐𝑒𝑙𝑙 = 4𝑙
3 cos2𝜔 sin𝜔 sin 2𝛼 (5.3) 

Furthermore, considering that the CFRP rods have a circular cross-section of 

an average diameter d, it is possible to obtain the average volume of the rods 𝑉𝑟𝑜𝑑 

while multiplying its cross-area and the length 2l within a cell. Then, the relative density 

of the cell �̅�𝑐 and thus, the core, is obtained as Eq. (5.4). 

�̅�𝑐 =
4𝑉𝑟𝑜𝑑
𝑉𝑐𝑒𝑙𝑙

=
𝜋𝑑2

2𝑙2 cos2𝜔 sin𝜔 sin 2𝛼
=

2𝜋𝑑2 sin𝜔

𝐻2 cos2𝜔 sin 2𝛼
 

(5.4) 

The variation of the relative density (Eq. (5.4)) as a function of the diameter of 

the rods is shown graphically in Figure 5.7, in which a quadratic polynomial curve is 

represented. By multiplying the relative density of the core �̅�𝑐 by the density of the rods 

𝜌𝑠 = 1550 kgm-3 (i.e., the base material from which they are made), the core density is 



  144                                5. Ultra-lightweight lattices made from CFRP rods  

 

attained as 𝜌𝑐 = �̅�𝑐 ∙ 𝜌𝑠. Then, the theoretical core densities are obtained and exhibited 

in Table 5.3 as well. 

 

Figure 5.7. Core relative density variation as a function of the rod´s diameter 

5.3 Core out-of-plane compression 

The analytical and FE models for the core mechanical response as the core 

compressive elastic modulus and strength are presented in this section. The single 

unit cell model from Figure 5.8 is taken as basis for the analyses. A generic compres-

sive load is applied according to the z-direction, in order to study the displacements 

experienced by the rods, modelled as built-in trusses at both ends. Analytical models 

are based on the load´s decomposition into its perpendicular components upon a sin-

gle rod, following a local coordinate system (Figure 5.8.c). the displacements are eval-

uated at the middle of the unit cell, taking advantage of its symmetry. Moreover, linear 

and non-linear simulations using FEMAP™ 10.3 with NX™ Nastran® [29] are carried 

out in order to further complement the analytical studies for predicting core behaviour 

under the applied stresses using Figure 5.8 as the coordinate reference and modelling 

the base material employing Table 4.1 properties. The CFRP rods are simulated by 

discretization using 1D-bar elements (CBAR) and 48 elements per rod. 

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

6

0.34432

1.3773

3.09892

 Employed rod diameter

 

 

C
o
re

 r
e
la

ti
v
e
 d

e
n
s
it
y
 (

%
)

Rod diameter (mm)

Limit of targeted density



5. Ultra-lightweight lattices made from CFRP rods                                                 145 

 

(a) 

                          

(b) (c) 

 

 

Figure 5.8. (a) A schematic BCC-like lattice render with a compression loading case. 

(b) Sketch of the load case. (c) Free body diagram of a CFRP half truss. 

5.3.1 Compressive stiffness 

The analyses for obtaining the compressive elastic modulus 𝐸𝑐 of the CFRP 

lattice core contemplates the elastic straining of a single truss within the half of the 

studied unit cell (Figure 5.8.c). Such deformations are obtained by simple beam theory 

while considering the displacement 𝛿 experimented by a pultruded CFRP truss due to 

¼ of the total applied compressive load 𝑃, as 𝑃 = 4𝐹.  

5.3.1.1 Analytical approach 

Considering small displacements, when a beam is loaded by a concentrated 

load, the deflection 𝛿𝑗 at the loading point can be determined by calculating the partial 

derivative of the strain energy of the beam 𝑈 with respect to the acting forces 𝐹𝑗 as 
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Castigliano´s second theorem as Eq. (5.5) [67].  

𝛿𝑗 =
𝜕𝑈

𝜕𝐹𝑗
 (5.5) 

In this way, based on the symmetry of the cell (Figure 5.8.b and Figure 5.8.c) 

the model is sketched as a cantilever beam with a punctual load 𝐹 at the core mid-

plane. The displacement 𝛿 due to the load 𝐹 is then defined by its perpendicular dis-

placement components in parallel (𝛿∥) and perpendicular (𝛿⊥) directions according to 

the rod orientation as Eq. (5.6) and Eq. (5.7). 

𝛿∥ = 𝛿 sin𝜔 (5.6) 

𝛿⊥ = 𝛿 cos𝜔 (5.7) 

Considering the displacement on each perpendicular directions, the internal 

strain energy of the beam in parallel direction 𝑈∥ is caused by the parallel component 

of the force 𝐹, equal in modulus to the reaction 𝐹∥, and depends on the cross-sectional 

area of the rod as 𝐴𝑟𝑜𝑑 =
𝜋𝑑2

4
.  

𝑈∥ = ∫
𝑁2𝑑𝑥′

2𝐸𝑟𝑜𝑑1𝑠𝐴𝑟𝑜𝑑

𝑙

0

 (5.8) 

Eq. (5.8) shows the internal strain energy due to the parallel load component. 

Factor N represents the general expression of the applied axial forces while 𝐸𝑟𝑜𝑑1𝑠 is 

the Young’s modulus of the base material of the rod in parallel direction. Then solving 

Eq. (5.8) deriving with respect to 𝐹, the displacement in parallel direction is shown as 

Eq. (5.9). In this case, 𝑁 is equal to 𝐹∥. 

𝛿∥ =
𝜕𝑈∥
𝜕𝐹𝑗

=∑(∫
𝑁𝑗

𝐸𝑟𝑜𝑑1𝑠𝐴𝑟𝑜𝑑

𝜕𝑁𝑗

𝜕𝐹𝑖
𝑑𝑥′

𝑙

0

)

𝑚

𝑗=1

=
𝐹∥𝑙

𝐸𝑟𝑜𝑑1𝑠𝐴𝑟𝑜𝑑
 (5.9) 

Furthermore, the internal strain energy of the rod in perpendicular direction 𝑈⊥ 

is dependent on the perpendicular component of the force 𝐹 as 𝐹⊥, and the flexural 

rigidity 𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′ of the truss (Eq. (5.10)). Factor M represents the general expression 

of the acting bending moment. The transverse shear effect upon the shear strain en-

ergy is neglected in this formulation due to the slenderness of the truss (L >> d)  [169] 

and the truss is assumed as an Euler-Bernoulli beam.  
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Figure 5.9. Scheme of a cantilever beam with a guided end (lateral displacement with 

no rotation) 

The case is schematically represented in Figure 5.9 as a cantilever beam with 

a guided end, at which the angle of the cross-section does not change (rotation re-

stricted). This effect is represented by a concentrated moment 𝑀(𝑥´) at the end of the 

beam acting in an opposite way to the displacement due to 𝐹⊥. 

𝑈⊥ = ∫
𝑀2𝑑𝑥′

2𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′

𝑙

0

 (5.10) 

Deriving Eq. (5.10) with respect to 𝐹 the component of the displacement in per-

pendicular direction is presented as Eq. (5.11). Component 𝐼𝑥′ represents the cross-

sectional second moment of area, where 𝐼𝑥′ =
𝜋𝑑4

64
.  

𝛿⊥ =
𝜕𝑈⊥
𝜕𝐹𝑗

=∑(∫
𝑀𝑗

𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′

𝑙

0

𝜕𝑀𝑗

𝜕𝐹𝑖
𝑑𝑥′)

𝑚

𝑗=1

=
𝐹⊥𝑙

3

3𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′
−

𝑀(𝑥´)𝑙
2

2𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′
 (5.11) 

Since the angle at point B does not change at the end of the beam where 𝑀(𝑥´) 

and 𝐹⊥act, the sum of the rotations must be zero. Therefore, the angles at point B are 

calculated via Eq. (5.12) applying Castigliano´s second theorem for rotations at the 

location of the concentrated force and moment. 

𝜃 =
𝜕𝑈⊥
𝜕𝑀𝑗

=∑(∫
𝑀𝑗

𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′

𝑙

0

𝜕𝑀𝑗

𝜕𝑀𝑖
𝑑𝑥′)

𝑚

𝑗=1

=
𝐹⊥𝑙

2

2𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′
−

𝑀(𝑥´)𝑙

𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′
= 0 (5.12) 

 From Eq. (5.12) and solving for the moment 𝑀(𝑥´), Eq. (5.13) defined the rela-

tions between the force and the opposite moment.  

𝑀(𝑥´) =
𝐹⊥𝑙

2
 (5.13) 

 Replacing Eq. (5.13) in Eq. (5.11), the total displacement at point B is then de-

fined by Eq. (5.14). 
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𝛿⊥ =
𝐹⊥𝑙

3

3𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′
−

𝐹⊥𝑙
3

4𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′
=

𝐹⊥𝑙
3

12𝐸𝑟𝑜𝑑1𝑠𝐼𝑥′
 (5.14) 

The core effective out-of-plane compressive modulus 𝐸𝑐  is defined by the unit 

cell modulus as Eq. (5.15), as the ratio of the compressive stress 𝜎𝑐 to the compressive 

strain 𝜀𝑐 of the unit cell. 

𝐸𝑐 =
𝜎𝑐
𝜀𝑐

 (5.15) 

According with Figure 5.8.b coordinate system, 𝜀𝑐 is then defined by Eq. (5.16). 

𝜀𝑐 =
(𝛿∥

2 + 𝛿⊥
2)

1
2

𝑙 sin𝜔
=

𝛿

𝑙 sin𝜔
 (5.16) 

Moreover, since each unit cell has four trusses, the total compressive stress 

over a unit cell is given as Eq. (5.17), specifying force P by its components according 

to z-direction (Figure 5.8). 

𝜎𝑐 =
𝑃

𝐴𝑐𝑒𝑙𝑙
≡
2(|𝐹∥| sin𝜔 + |𝐹⊥| cos𝜔)

(𝑙 cos𝜔)2 sin 2𝛼
=  

= 𝐸𝑟𝑜𝑑1𝑠
𝜋𝑑2𝛿

2𝑙3 cos2𝜔 sin 2𝛼
[sin2𝜔 +

3

4
(
𝑑

𝑙
)
2

cos2𝜔] (5.17) 

Substituting Eq. (5.16)  and Eq.(5.17) into Eq. (5.15) and solving for 𝐸𝑐, the core 

modulus is given by Eq. (5.18).  

𝐸𝑐 = 𝐸𝑟𝑜𝑑1𝑠
𝜋𝑑2 sin𝜔

2𝑙2 cos2𝜔 sin 2𝛼
[sin2𝜔 +

3

4
(
𝑑

𝑙
)
2

cos2𝜔
⏟        
𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙 𝑡𝑒𝑟𝑚

] (5.18) 

The component called as “transversal term” in Eq. (5.18), it only contributes from 

0.02906 to 0.26 % to the expression in parentheses for the cases analyzed in this work, 

so it will be neglected to ease calculations, and thus, Eq. (5.19) is assumed to hold as 

the core compressive modulus. The contribution of the transverse force, will be then 

addressed indirectly via FE-simulations as the bending moment attained (section 

4.3.2.2) 

𝐸𝑐 ≈ 𝐸𝑟𝑜𝑑1𝑠
𝜋𝑑2 sin3𝜔

2𝑙2 cos2 𝜔 sin 2𝛼
 (5.19) 
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The variation of the compressive modulus dependent on the diameter is shown 

in Figure 5.10. The curve denotes a function of fourth grade in which the larger the 

diameter, the greater the elastic modulus of the core. It should be borne in mind that 

the elastic moduli values are obtained for a core geometrical configuration, in which 

most of the unit cell is empty, and only a small part of the cell volume bears the load 

(i.e., the rods). 

 

Figure 5.10. Curve of core compressive modulus predicted by the analytical model 

5.3.1.2 Numerical approach 

Different linear static FE-simulations are carried out to have better insights on 

the structure behavior: firstly, the unit cell lattice structure is simulated as a BCC-like 

structure (simulating the effect of mid-plane connecting points as an array of bars as 

in Figure 5.11.a and Figure 5.12), and then, the unit cell is plot as an equivalent BCC 

structure, in which the rods have a common node in the mid-plane as in Figure 5.11.b). 

The latter simulation is addressed via two different boundary conditions set at the mid-

plane as a pinned node or as a node with rotational constrains, albeit it is free to dis-

place only over z-direction. In both cases, the ends of the rods are fully constrained. 

The structures sketched in Figure 5.11 with rod diameter d = 0.5 mm are taken as 

example for analyses. The results of the strains obtained from the simulations for a 
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total generic load of 1 kN in the vertical z-direction at the top-end nodes were 3.1306% 

for the case of Figure 5.11.a and 3.1312% for the case of Figure 5.11.b, representing 

a difference of 0.019%, which is acceptable for further numerical studies either as BCC 

or BCC-like unit cell models. No substantial differences are observed in the displace-

ments of the Figure 5.11.b case in terms of rotational constraints at the central node. 

Additionally, simple load FE linear analyses over the mid-plane node (Figure 5.12) are 

carried out for evaluating the loads within the node´s region to complement the study, 

and are provided in Annex D. 

a) Unit cell as BCC-like lattice structure (b) Unit cell as BCC lattice structure 

  

Figure 5.11. Bar-array FE renders of the unit cells employed for simulations compari-

sons 
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Figure 5.12. Zoomed central node as an array of bars 

In order to validate the analytical compressive modelling, linear static finite ele-

ment (FE) simulations are implemented for indirectly predicting the elastic compressive 

modulus of the core 𝐸𝑐, considering the three different rod diameters proposed, while 

analyzing the unit cell response to load cases.  

 

Figure 5.13. Compressive load vs. displacement obtained from linear simulations 

The compressive modulus 𝐸𝑐 of the BCC-like cores are obtained indirectly from 

the load vs. displacement curves (Figure 5.13), based on the slope 𝑠 = 
𝑃

𝛿
 and calculated 

applying Eq. (5.20), regarding to the core thickness H and the vertical displacement 𝛿. 
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𝐸𝑐 =
𝐻

𝛿
𝜎𝑐 =

𝐻

𝛿

𝑃

𝐴𝑐𝑒𝑙𝑙
=
𝑠𝐻

𝐴𝑐𝑒𝑙𝑙
 (5.20) 

Therefore, by obtaining the displacements of the top-nodes, the behaviour of 

the unit cell is studied. Table 4.5 shows a summary of the linear static results for the 

different rods size proposed and a briefly comparison with the theoretical results, ap-

plying a total generic load of 1 kN in the vertical z-direction. The predicted strain results 

to be larger for the smaller diameters and thus, the core moduli vary directly propor-

tional to the rod size. Then, the core compressive moduli are predicted as 100.65 MPa, 

403.95 MPa and 909.2 MPa, for the 0.5 mm, 1mm and 1.5 mm rod´s diameter, respec-

tively. The values are in good correspondence with the theoretical approaches. 

Table 5.4. Core compressive elastic moduli predicted by FE 

Ø 𝐿  𝐻 𝛿 s 𝜖𝑐 𝐸𝑐 𝐸𝑐* 

(mm) (mm) (mm) (mm) (N/mm) (μm/m) (MPa) (MPa) 

0.5 17.96 25.4 0.7822 1274.064 3079.82 100.65 99.05 

1 17.96 25.4 0.1949 5123.580 767.38 403.95 396.89 

1.5 17.96 25.4 0.0866 11547.370 340.94 909.19 895.59 

Note: (*) Theoretical value 

5.3.2 Compressive strength 

In this section, the analytical and FE studies of BCC-like lattice cores under 

compressive loads are employed for obtaining the main core failure loads and mecha-

nisms. The failure modes are considered when unit cell members collapse. Several 

failure mechanisms are investigated including (3):  

5. Elastic buckling of a truss 𝜎𝑐𝐵 

6. Compressive fracture of a truss 𝜎𝑐𝑅 (when 𝜎1𝑠
−  exceeds 𝑅1𝑠

− ). 

The governing failure mode is then associated to the one in which the core peak 

compressive strength 𝜎𝑐𝑝𝑘 is the lowest and is given by Eq. (4.13).  

𝜎𝑐𝑝𝑘 = 𝑚𝑖𝑛( 𝜎𝑐𝐵, 𝜎𝑐𝑅) (5.21) 

 
(3) Another failure mode as truss push-out, or the entry of the rod through the skins, is proposed as a 

potential failure mode under other study conditions in Annex D 
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The influence of the director angle 𝜔 (Figure 5.8) on the compressive strength 

is addressed by exemplifying its effect over the Euler buckling load in compression. 

The description is presented in Annex D, by analyzing a particular case of a constant 

cell area. 

5.3.2.1 Analytical approach 

The analytical approaches are modelled following the line-up of Figure 5.8. Con-

sidering the failure of a core member as the rods, the failure modes addressed are the 

ones proposed the beginning of this section and described as follows. The transversal 

load is neglected to ease the analyses as its contribution is almost negligible as de-

tailed in section 5.3.1.1. 

5.3.2.1.1 Elastic buckling of a truss 

Slender CFRP rods under compressive loads might undergo Euler buckling. As-

suming that the trusses are thought as beams with two ends built-in between the core 

and face sheets. Only the half of the unit cell is employed to ease the analyses (Figure 

5.8.c), in order to study the buckling behavior of the rods with length l. 

Therefore, Euler’s critical load is given as Eq. (5.22) [67] (see section 2.2.3.2). 

Factor k presents different values according to the established boundary conditions. It 

shall be noted that k = 1 represents a truss with one end clamped and the other free, 

while k = 0.5 if the truss present two ends fixed. Then, the k values can be found 

between these two values (0.5 ≤ k ≤ 1) since the connections in the real case between 

rods and rod-skins are elastic links. In this work, as starting point for studies is assumed 

that the trusses are pinned but guided at the mid-plane considering the connecting 

node effect. This leads to a k value of 0.699 ≈ 0.7. This value will be later confirmed by 

numerical simulations. 

𝐹𝑟𝑜𝑑𝐸𝑢 =
𝜋2𝐸𝑟𝑜𝑑1𝑠𝐼𝑥’
(𝑘𝑙)2

≥ 𝐹∥ (5.22) 

The compressive load applied to the unit cell is decomposed to its rod members 

by means of the director angles 𝜔 and 𝛼 (Figure 5.8). When the critical buckling load 

is attained, the parallel load 𝐹∥ is equal in modulus to 𝐹𝑟𝑜𝑑𝐸𝑢. Thus, replacing Eq. (5.22) 

into Eq. (5.17) and considering four trusses within a unit cell, the nominal compressive 

strength of the core due to Euler buckling failure of the trusses is given by Eq. (5.23). 
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𝜎𝑐𝐵 ≈
𝐸𝑟𝑜𝑑1𝑠𝜋

3𝑑4

32𝑘2 𝑙4cos2𝜔 sin 2𝛼
sin𝜔 (5.23) 

The influence of the director angle 𝜔 on the buckling load is shown in Annex D, 

by analyzing a particular case of a constant cell area. 

5.3.2.1.2 Compressive fracture of a truss 

The nominal out-of-plane compressive strength of the BCC-like CFRP core (𝜎𝑐𝑅) 

depends upon the failure compressive strength value of the employed rod members 

(𝑅1𝑠
− ). The load is decomposed to the rods as a local axial stress to rods as 𝜎1𝑠

− . Then, 

the fracture of the rod is attained when 𝜎1𝑠
− ≥ 𝑅1𝑠

− , and as a result, the collapse of the 

core. The failure load of the CFRP rods is set by Eq. (5.24). 

𝐹𝑟𝑜𝑑𝑅 = 𝑅1𝑠
− 𝐴𝑟𝑜𝑑 ≥ 𝐹∥ (5.24) 

Recalling previous outcome and considering also co-linear compressive loads 

to the trusses according to director angles (Figure 5.8), the parallel load 𝐹∥ is equal in 

modulus to 𝐹𝑟𝑜𝑑𝑅 when the collapse strength of the base material is reached. Conse-

quently, combining Eq. (5.24) and Eq. (5.17), the core compressive strength consider-

ing unit cell member fracture, is obtained by Eq. (5.25) .  

𝜎𝑐𝑅 ≈
𝑅1𝑠
− 𝜋𝑑2

2 𝑙2cos2𝜔 sin 2𝛼
sin𝜔 (5.25) 

5.3.2.1.3 Analytical results 

The analytical predictions of the failure modes are plotted in Figure 5.14, iden-

tifying: Euler buckling failure mode (𝜎𝑐𝐵), as the blue-dashed curve (calculated using 

Eq. (5.23)) and  rod fracture (𝜎𝑐𝑅), as the green-dotted-dashed curve (Eq. (5.25)). The 

dominant modes are plotted as the grey region, as the area below the failure. 

The strengths predictions for the analyzed cases are exhibited in Table 4.6. The 

failure modes are predicted as the minimum stress for each core case. The modes 

with a higher probability to occur are Euler buckling failure for the cores made from 0.5 

mm rods, and core Euler buckling regarding to the 1 mm rods (although they are found 

also close to the fracture region), and fracture regarding to the 1.5 mm. 
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 (a) Curve plotting for predicted failure modes 

 

(b) Zoomed area for identifying failure regions 

 

Figure 5.14. Failure maps according to analytical predictions for compressive loads 
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 Table 5.5. Core compressive strengths according to analytical approaches 

Ø 𝐿  𝑓  𝑡1  𝛼  𝜔  𝑅1𝑠
−   𝐸𝑟𝑜𝑑1𝑠  𝜎𝑐𝐵* 𝜎𝑐𝑅 

(mm) (mm) (mm) (mm) (°) (°) (MPa) (MPa) (MPa) (MPa) 

0.5 17.96 2 0.4 45 45 450 115 0.193 0.775 

1 17.96 2 0.4 45 45 450 115 3.098 3.106 

1.5 17.96 2 0.4 45 45 450 115 15.72 7.009 

Note: (*) the values are obtained for a buckling k factor of 0.7 

 As previously presented, a seed value k = 0.7 is employed for the base theoret-

ical buckling calculations in Eq. (5.23). Nevertheless, different attainable strengths 

while varying k coefficient (section 5.3.2.1.1) are presented in Table 5.6 as an example 

of the attainable strength values for the core cases analysed, The k coefficients will 

also be attained via numerical analyses and experimental tests. 

Table 5.6. Core compressive strength due to Euler buckling for different k coefficients 

 k = 0.5  k = 0.6 k = 0.7 k = 0.8 k = 0.9 k = 1 

Ø 𝝈𝒄𝑩 𝝈𝒄𝑩 𝝈𝒄𝑩 𝝈𝒄𝑩 𝝈𝒄𝑩 𝝈𝒄𝑩 

(mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

0.5 0.379 0.263 0.193 0.148 0.117 0.095 

1 6.072 4.216 3.098 2.372 1.874 1.518 

1.5 30.827 21.407 15.728 12.042 9.514 7.707 

5.3.2.2 Numerical approach 

The FE simulations give support to the analytical models by evaluating the fail-

ure independently according to two different simulations. This section presents two 

different FE predictions:  

1.  The linear static simulations, in which the core elastic modulus is indirectly pre-

dicted (as in section 4.3.1.2), and the local stresses of the rods, when buckling is not 

considered. Static FE simulations evaluated each lattice-based core design proposed. 

However, the case of 0.5 mm is presented as a study example for the procedure, alt-

hough the results are then given for each rod case. Therefore, a generic load of 1 kN 

is applied according to z-direction, taking Figure 5.8 as coordinate reference. 

  Figure 5.15 presents renderings of the bending moments and combined 

stresses distribution. The force is then mostly transferred as axial compressive loads 

to the rods, throughout the director angles 𝜔 and 𝛼. The load axial has a value of 
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353.35 N per rod and represents more than 99% of the stress components. The theo-

retical value is on average 𝜎𝑠 =
1

4

1000

sin45
𝜋
0.5

4

2
⁄ = 1800.63 MPa for the proposed case, 

having good correspondence with the simulations. 

The bending moment, although almost negligible, results on a linear distribution 

with a maximum at both rod´s ends and at the mid-plane due the applied constraints. 

Recalling section 5.3.1.1. of the analytical approach, the neglect of the transverse term 

in the calculations is supported as well considering the small value of the bending mo-

ments attained, and the predominance of the axial load observed on the simulations. 

The missing core cases for 1 mm and 1.5 mm presented similar results as the 

slender case of 0.5 mm (they present the same axial loads along the rods), only having 

on average axial stresses of 449.89 MPa and 199.95 MPa, respectively for a total sim-

ulated load of 1 kN. 

(a) Bending moments (b) Combined stresses 

  

Figure 5.15. Renders of the bending moment and combined stress distribution due to 

compressive loads for the 0.5 mm rod diameter lattice unit cell 

2.  The non-linear simulations show insights upon the critical load attainable for 

each core case are addressed. They present the buckling behaviour of rods during 

compressive loading. The instability load is established by employing a modified New-

ton-Raphson method as solver. The simulation is carried out applying vertical loads 

over the top nodes, at the same time acquiring the displacements performed by the 

rest of the nodes, until the model becomes unstable, and the simulation stops. Thus, 

tracking points on selected nodes are extracted and their trajectory curves are given 
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in Figure 5.16, starting from zero displacement up to instability, while reaching the crit-

ical load. The maximum displacement of the nodes denotes an asymptote to which is 

possible to identify the critical applied load and indirectly obtain the critical Euler’s fac-

tor k given by Eq. (5.22). The critical loads 𝑃𝑐𝑟𝑖𝑡
∗  are found of 60.6 N, 862.5 N and 

3865.6 N for diameters 0.5 mm, 1 mm, and 1.5 mm, respectively. 

(a) Rod diameter 0.5 mm (b) Rod diameter 1 mm 

  

(c) Rod diameter 1.5 mm Reference on node tracking 

 

       

Figure 5.16. Load vs. node displacement curves obtained from the non-linear simula-

tions 

Furthermore, the material distortion due to the applied load on the failure step 

is provided in Figure 5.17. Remarkably, the figures present a change in the orientation 

of the mid-node at the mid-section, denoting a rotation at the inflexion point as the 

effect of buckling of the rods. It could be inferred that the constraint of the rotating mid-

node does not have an effect on the displacements according to the linear simulations 

(as stated in the section 4.3.1.2), but it can play a fundamental role when evaluating 
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buckling of bars. In practical terms, as an example, Euler's critical factor k would 

change from ≈ 0.7 to 0.5 and would underestimate the critical load of the proposed real 

case. 

(a) Rod diameter 0.5 mm (b) Rod diameter 1 mm (c) Rod diameter 1.5mm 

   

   

Figure 5.17. Renders obtained from FE buckling simulations at the failure step for 

different rod diameters, while compression loading 

5.3.2.2.1 Numerical results 

In order to get a better overview of the results of the linear static and non-linear 

simulations, Figure 5.18 shows a summary of the predicted strength results for each 

core case. The core strength predictions exhibit a direct dependence upon the rod´s 

size, i.e., the larger the rod size, the higher the core strength. Thus, the expected core 

strengths are of 0.187 MPa, 2.67 MPa and 6.981 MPa (the smaller value of the bar 

graph for each case), for rods varying as 0.5 mm, 1 mm, and 1.5 mm, respectively. 

From the simulations, buckling failure is predicted for rods diameter 0.5 mm and 1 mm, 

while failure by fracture for the 1.5 mm.  
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Figure 5.18. Summary of FE simulations for core compressive strength predictions 

Table 5.7. Core compressive strengths from numerical and analytical approaches 

Ø 𝐿 𝑃𝑐𝑟𝑖𝑡* 𝜎𝑐* 𝜎𝑐** 𝜎𝑐*** Expected failure 
mode (mm) (mm) (kN) (MPa) (MPa) (MPa) 

0.5 17.96 60.6 0.187 0.775 0.1931 Euler buckling 

1 17.96 862.5 2.670 3.101 3.0981 Euler buckling 

1.5 17.96 3865.6 11.98 6.981 7.009 Fracture 

Notes: (*) Non-linear static simulation, (**) Linear static simulation, (***) Analytical. (1) 

calculated using k = 0.7 

 The results are complemented by Table 4.7, in which the numerical and analyt-

ical approaches are compared. The minimum strength is attributed to buckling failure 

for the slender rods as 0.5 mm and 1 mm, predicting values of 0.187 MPa and 2.67 

MPa. In contrast, the predictions for the rod diameter 1.5 mm show a failure due to rod 

fracture because of its larger rigidity as 𝐸1𝑠𝐼𝑥′, in which the buckling behaviour may be 

avoided and thus, a core compressive strength of 6.98 MPa would be attained. These 

numerical results are in correspondence with the theoretical values attained, as 0.193 

MPa, 3.098 MPa, and 7.009 MPa for rods diameters of 0.5 mm, 1 mm, and 1.5 mm, 

respectively. 
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5.4 Core plate shear 

This section presents the mechanical properties´ prediction by shear loading.  

(a) Scheme of a rrepresentative unit cell with a plate-shear loading case 

                              

(b) From view of the loading case (c) Sketch of displacement components  

  

Figure 5.19. Schematic BCC-like lattice render with a shear loading case.  

The shear load is transferred by the load plates as shown in Figure 5.19, while 

assuming that the rods within the unit cell are fixed at their ends to the CFRP skins. 

Employing Figure 5.19.c as model reference for theoretical calculations, the displace-

ment 𝛿 due to a total force applied 𝑃 is studied while considering the diagram of dis-

placements over the mid-plane at a distance 𝐻/2, observing that only the half of the 

total displacement would be attained when comparing the relative displacement of the 

bottom and to plates. In addition, numerical approaches are provided for supporting 

the analytical models, likewise as set out in section 5.3, employing rod´s mechanical 

properties from Table 4.1 and the coordinate references as Figure 5.19. 
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5.4.1 Shear stiffness 

The director angles 𝜔 and 𝛼 (Figure 5.19) have an effect on the shear load 

transferred, influencing the rods´ response. In this work, the displacement according 

to the director angles is taken as base for calculations of the core shear modulus by 

studying a single unit cell.  

5.4.1.1 Analytical approach 

The displacement 𝛿 has been decomposed not only into its components accord-

ing to 1-direction (𝛿1) and 2-direction (𝛿2), but also into its components on xz-plane as 

parallel (𝛿∥) and perpendicular (𝛿⊥) directions regarding the rod under study. 

Hence, the displacement 𝛿 due to the load 𝑃 is defined by its perpendicular 

displacement components as Eq. (5.26) and Eq. (5.27). 

𝛿1 = 𝛿 cos 𝛼 (5.26) 

𝛿2 = 𝛿 sin 𝛼 (5.27) 

Moreover, the displacement components are defined according to rod orienta-

tion as Eq.(5.28) and Eq. (5.29) in order to study the rod strain. 

𝛿∥ = 𝛿1 cos𝜔 (5.28) 

𝛿⊥ = 𝛿1 sin𝜔 (5.29) 

Recalling previous analyses, concerning internal strain energy of a beam, the 

displacement in parallel and perpendicular directions are given by Eq. (5.9) and Eq. 

(5.14), respectively. To simplify the studies, it is assumed that the elastic response of 

the rods to tensile and compressive loads is the same. Then, the total force component 

in 1-direction 𝑃1 is defined by the response of two rods within a unit cell (one in tension 

and the other in compression) as Eq. (5.30). 

|𝑃1| = 2(𝐹∥ cos𝜔 + 𝐹⊥sin𝜔) =  

=
𝜋𝑑2

2𝑙
𝐸𝑟𝑜𝑑1𝑠𝛿1 [cos

2𝜔 +
3

4
(
𝑑

𝑙
)
2

sin2𝜔] (5.30) 

An analogous analysis is done concerning 2-direction and thus, Eq. (5.31) de-

fines the total force component 𝑃2. 
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|𝑃2| =
𝜋𝑑2

2𝑙
𝐸𝑟𝑜𝑑1𝑠𝛿2 [cos

2𝜔 +
3

4
(
𝑑

𝑙
)
2

sin2𝜔] (5.31) 

The total applied load 𝑃 is given in terms of the displacement as Eq. (5.32) 

|𝑃|2 = |𝑃1|
2 + |𝑃2|

2 =
𝜋𝑑2

2𝑙
𝐸𝑟𝑜𝑑1𝑠𝛿 [cos

2 𝜔 +
3

4
(
𝑑

𝑙
)
2

sin2𝜔] (5.32) 

The overall shear stress 𝜏𝑐 applied on a unit cell is given by Eq.(5.33), where 𝛾𝑐 

denotes the strain caused by the generic load 𝑃 and 𝐺𝑐 represents the shear modulus 

of the unit cell. 

𝜏𝑐 =
𝑃

𝐴𝑐𝑒𝑙𝑙
= 𝐺𝑐𝛾𝑐 (5.33) 

The strain 𝛾𝑐 is defined as Eq. (5.34) in terms of the displacement over the half-

cell height ratio. 

𝛾 =  
𝛿

𝑙 sin𝜔
 (5.34) 

Substituting Eq. (5.34) and Eq. (5.32) into Eq. (5.33) and solving for 𝐺𝑐, the core 

effective in-plane shear modulus is defined as Eq. (5.35). 

𝐺𝑐 =
𝐸𝑟𝑜𝑑1𝑠𝜋𝑑

2 sin𝜔

4 𝑙2cos2𝜔 sin 2𝛼
[cos2𝜔 +

3

4
(
𝑑

𝑙
)
2

sin2𝜔
⏟        
𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑡𝑒𝑟𝑚

] (5.35) 

Analogously to section 5.3.1.1, the component “transversal term” in the last ex-

pression, it only contributes from 0.02906 to 0.26 % to the expression in parentheses 

for the cases analyzed in this work, so it will be neglected to ease calculations. Then, 

the core shear modulus varies regarding the rod´s diameter following a polynomic 

curve of second grade (Figure 5.20), and it is directly dependent on the rod´s elastic 

modulus (Eq. (5.36)) 

𝐺𝑐 ≈
𝐸𝑟𝑜𝑑1𝑠𝜋𝑑

2 sin𝜔

4𝑙2 sin 2𝛼
 (5.36) 
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Figure 5.20. Curve of core shear modulus predicted by the analytical model 

5.4.1.2 Numerical approach 

Linear static FE simulation complement the analytical studies. The elastic shear 

modulus of the core 𝐺𝑐, is studied through a unit cell considering the three different rod 

diameters proposed. As outlined in section 4.3.1.2, here the shear modulus 𝐺𝑐 of the 

BCC-like cores is obtained also indirectly from the displacement of the top nodes of 

the cell regarding to the load applied (Figure 5.21). Using the slope s = 
𝑃

𝛾𝑐
, and employ-

ing Eq. (5.37), the shear modulus is calculated. 

𝐺𝑐 =
𝑃

𝐴𝑐𝑒𝑙𝑙 𝛾𝑐
= 

𝑃𝐻

𝐴𝑐𝑒𝑙𝑙𝛿
=
𝑠𝐻

𝐴𝑐𝑒𝑙𝑙
 (5.37) 

The core shear moduli obtained from the linear simulations are resumed in Ta-

ble 5.8. The predicted shear moduli are of 49.52 MPa, 198.32 MPa and 447.36 MPa 

for the rod´s diameter varying 0.5 mm, 1 mm, and 1.5 mm, respectively. The straining 

depends directly on the rod´s size (its flexural rigidity), being the largest value found 

for the smallest rod´s diameter. The displacement and straining are presented for the 

case of a total shear load of 1 kN. Good correspondences are found between theory 

and simulations. 
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Figure 5.21. Shear load vs. displacement curves obtained from the simulations 

Table 5.8. Core shear elastic moduli predicted by FE 

Ø 𝐿  𝐻 𝛿 s 𝛾𝑐 𝐺𝑐 𝐺𝑐* 

(mm) (mm) (mm) (mm) (N/mm) (μm/m) (MPa) (MPa) 

0.5 17.96 25.4 4.033 629.72 0.1588 49.58 49.53 

1 17.96 25.4 1.008 2517.91 0.0397 198.27 198.44 

1.5 17.96 25.4 0.446 5683.13 0.0176 447.52 447.46 

Note: (*) Theoretical value 

5.4.2 Shear strength 

The analytical models developed for core shear failure predictions focused on 

the collapse of unit cell members, considering that the shear load applied is transferred 

mostly as axial loads to the rods. The shear strength of the core is governed either by: 

1. Elastic buckling of a truss 𝜏𝑐𝐵 

2. Compressive fracture of a truss  𝜏𝑐𝑅 (when 𝜎1𝑠
−  exceeds 𝑅1𝑠

− ). 

3. Truss pull-out 𝜏𝑐𝑃 

The dominant failure mode results as the one where the shear strength 𝜏𝑐𝑝𝑘 is 

a minimum (Eq. (4.59)). The failure regions are presented in section 5.4.2.1.4, where 

the dominant modes are plotted as the grey region, as the area below the failure curve. 
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𝜏𝑐𝑝𝑘 = 𝑚𝑖𝑛( 𝜏𝑐𝐵, 𝜏𝑐𝑅 , 𝜏𝑐𝑃) (5.38) 

Furthermore, FE models are presented in this section for evaluating the stresses 

from two independent points of view: considering buckling and not considering it. 

The influence of the director angle 𝛼 (Figure 5.19) on the shear strength is ad-

dressed by exemplifying its effect over a buckling load due to a plate-shear case and 

is described in Annex D, by analyzing a particular case of a constant cell area. 

5.4.2.1 Analytical approach 

The core shear strength depends on the failure value of the lattice core mem-

bers, and the description is presented as follows. As previously stated in section 

4.4.1.1, the transversal term is neglected to ease the analyses. 

5.4.2.1.1 Elastic buckling of a truss  

Recalling previous analyses, slender CFRP rods under axial loads can fail by 

elastic buckling while reaching a critical load as Eq. (5.22). Assuming that the rod 

boundary conditions as clamped at both ends and considering the mid-plane as pinned 

but guided constraint (factor k ≈ 0.7), the core nominal shear strength due to core 

member buckling 𝜏𝑐𝐵 is given by Eq. (5.39) while substituting Euler’s critical load Eq. 

(5.22) as 𝐹∥ in Eq. (5.32) (i.e., first incorporating the terms in Eq. (5.30) and Eq. (5.31)) 

and replacing the correspondent terms in Eq. (5.33).  

The influence of the director angle 𝛼 on the buckling load due to shear is shown 

in Annex D, by analyzing a particular case of a constant cell area. 

5.4.2.1.2 Fracture of a truss  

Core member crushing is also expected when the parallel load 𝐹∥ is equal to the 

failure load of the CFRP rods (Eq. (5.24)) during a shear loading case. Then, substi-

tuting Eq. (5.24) and Eq. (5.32) into Eq. (5.33), the nominal core shear strength 𝜏𝑐𝑅 is 

given by Eq. (5.40). 

𝜏𝑐𝐵 ≈
𝐸𝑟𝑜𝑑1𝑠𝜋𝑑

4

64 𝑘2𝑙4 cos𝜔 cos 𝛼 sin 2𝛼
 (5.39) 
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𝜏𝑐𝑅 ≈
𝑅1𝑠
− 𝜋𝑑2

4 𝑙2 cos𝜔 cos 𝛼 sin 2𝛼
 (5.40) 

5.4.2.1.3 Truss pull-out 

The detachment between the rods and the core skins, thought as a debonding 

failure, is evaluated as well for the case of shear loading. As simplification for the anal-

yses, it is assumed that two similar failure modes can occur either as truss push-out 

(similarly as shown in Annex D) or as truss pull-out, since in the case of shear loads 

two rods within a unit cell are in tension, and the other two in compression (Figure 

5.19). Local axial stresses are considered to be equal in modulus (i.e., in tension or 

compression).  

 

Figure 5.22. A BCC-like lattice sketch showing the connection rods-skins 

Since cover layers of thickness 𝑡2 are set out over the rods´ ends (Figure 5.22) 

and steel plates are given for transferring the shear loads to the sample, the expected 

dominant debonding mode will be truss pull-out from the skins, while bearing tensile 

loads. The truss pull-out failure is simplified as a debonding failure between the CFRP 

rods and the skins. The adhesion strength between the rod and the faces is assumed 

as 𝜏𝑖𝑛𝑡 = 20 MPa [150]. The bonded area is given by Eq. (5.41), where 𝑡1 represents 

the thickness of the skin in which the rods go through. The glued meniscus between 

rod and skin with an estimated average flank size 𝑓 are also taken into account [150]. 

The flanks sizes are measured in the lab, having a nominal value of 2 mm (in average 

𝑓 = 2 ± 0.5 mm) for each rod size. The size of the flank is pre-designed in the manu-

facturing process.  
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𝐴𝑏𝑜𝑛𝑑 =
𝜋𝑑𝑡1
sin𝜔

+
√2𝑓𝜋𝑑

2 sin𝜔
 (5.41) 

Consequently, considering that the number of involved trusses that bear the 

shear loads is four within each unit cell, (N = 4), the global bonding strength concerning 

the adhesion strength and the bonded surface between rod-skin is 𝐹𝑟𝑜𝑑𝑃 (Eq. (5.42)). 

𝐹𝑟𝑜𝑑𝑃 = 𝐴𝑏𝑜𝑛𝑑𝜏𝑖𝑛𝑡𝑁 (5.42) 

As seen in previous failure formulations, the parallel load 𝐹∥ is equal in modulus 

to 𝐹𝑟𝑜𝑑𝑃 when the adhesion strength is reached. Combining Eq. (5.32), Eq. (5.33) and 

Eq. (5.42), the estimated core shear strength by evaluating truss pull-out from the skins 

is given by Eq. (5.43).  

𝜏𝑐𝑃 ≈
𝜏𝑖𝑛𝑡𝜋𝑑

𝑙2 cos𝜔 sin𝜔 cos 𝛼 sin 2𝛼
(𝑡1 +

√2

2
𝑓) (5.43) 

5.4.2.1.4 Analytical results  

 Table 5.9 shows the shear strengths according to the analytical results. For the 

0.5 mm rod case, a Euler buckling failure mode is predicted, having a strength of 0.136 

MPa; while rod pull-out failure mode is expected for the cores made from 1 mm and 

1.5 mm rods, attaining strengths of 1.001 MPa and 1.507 MPa, respectively. 

Table 5.9. Core compressive strengths according to analytical approaches 

Ø 𝐿  𝑓  𝑡1  𝛼  𝜔  𝑅1𝑠
−   𝐸𝑟𝑜𝑑1𝑠  𝜏𝑐𝐵* 𝜏𝑐𝑅 𝜏𝑐𝑃 

(mm) (mm) (mm) (mm) (°) (°) (MPa) (MPa) (MPa) (MPa) (MPa) 

0.5 17.96 2 0.4 45 45 450 115 0.136 0.548 0.500 

1 17.96 2 0.4 45 45 450 115 2.190 2.196 1.001 

1.5 17.96 2 0.4 45 45 450 115 11.12 4.956 1.507 

Note: (*) the values are obtained for a buckling k factor of 0.7 

Figure 5.23 represents the main failure modes regarding to the analytical pre-

dictions. The blue-dashed line corresponds to Euler buckling failure 𝜏𝑐𝐵 drawn by Eq. 

(5.39), the green-dotted-dashed curve represents the failure due to fracture 𝜏𝑐𝑅 using 

Eq. (5.40), and the red-dotted curve represents the rod pull-out 𝜏𝑐𝑃 employing Eq. 

(5.43). The grey area below the curves represents the dominant modes, and the 
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change in the failure regions is predicted approximately for rods of diameter ≈ 0.75 

mm, from Euler buckling mode to rod pull-out. 

(a) Curve plotting for predicted failure modes 

 

(b) Zoomed area for identifying failure regions 

 

Figure 5.23. Failure maps according to analytical predictions for shear loads 
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A seed value k = 0.7 is employed in Eq. (5.39) for the base theoretical buckling 

calculations (𝝉𝒄𝑩). Table 5.10 complement the buckling calculations, by varying k co-

efficient, between the attainable support cases (0.5 ≤ k ≤ 1). Different buckling strength 

𝜏𝑐𝐵 values are then presented within the table. 

Table 5.10. Core shear strength due to Euler buckling for different k coefficients 

 k = 0.5  k = 0.6 k = 0.7 k = 0.8 k = 0.9 k = 1 

Ø 𝜏𝑐𝐵 𝜏𝑐𝐵 𝜏𝑐𝐵 𝜏𝑐𝐵 𝜏𝑐𝐵 𝜏𝑐𝐵 

(mm) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

0.5 0.268 0.186 0.136 0.105 0.083 0.067 

1 4.293 2.981 2.190 1.677 1.325 1.073 

1.5 21.79 15.137 11.12 8.515 6.727 5.449 

5.4.2.2 Numerical approach 

Analogously to the compressive analysis, two independent types of simulations 

are carried out in this section. A total shear force P = 1 kN (Figure 5.19) is applied for 

evaluating the stresses upon the rods and for obtaining the proportional instability load 

factor. The description of the simulations is presented as follows.  

1. The linear static simulations are similar to the ones performed in section 4.4.1.2 

(no rod buckling is allowed). As example for the model,  a unit cell made from trusses 

of 0.5 mm diameter is presented (Figure 5.24.).  

(a) Axial loads (b) Bending moments 

  

Figure 5.24. Renders of the axial loads and bending moment for the 0.5mm rod diam-

eter lattice unit cell while shear loading 
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The applied load is then decomposed mostly as axial loads to the rods, where 

two of them are subjected to tensile loading and the other two to compressive loading. 

A maximum value of 499.7 N per rod is attained. Contrasting with the load employed, 

the resulting maximum bending moments are nearly negligible (Figure 5.24.b) and 

thus, the load over the rods is mostly represented by axial loads, in correspondence 

with stated in section 4.4.1.1. The shear loads are not exemplified schematically be-

cause of their small contribution to the maximum stresses (e.g., showing load values 

of almost 0.12 N and 0.9 N, for diameters of 0.5 mm and 1.5 mm, respectively. 

2.  The non -linear simulations evaluate the instability load throughout the load-

displacement respond of selected nodes (Figure 5.25).  

(a) Rod diameter 0.5 mm (b) Rod diameter 1 mm 

  

(c) Rod diameter 1.5 mm Reference on node tracking 

 

       

Figure 5.25. Load vs. node displacement curves obtained from the non-linear simula-

tions 
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The displacements are tracked and graphically represented until the simulations 

stops. In all cases, the curves denote an asymptote to which the critical loads are at-

tainable as a first approach. The k buckling coefficient factor for the mid-plane node 

can be extracted indirectly by equating Eq. (5.22) to the critical buckling load and solv-

ing for k. In addition, critical loads are predicted for core shear strength while evaluating 

buckling behaviour as 51.6 N, 649 .9 N, and 2578 N for diameters varying from 0.5 

mm, 1 mm, and 1.5 mm, respectively. 

The core shear buckling analyses are complemented by FE renderings (Figure 

5.26), where the buckling behaviour for different rod diameters are schematically rep-

resented from the simulations at the last simulated step, as top and isometric views. 

The material distortion is characterized by a rotation at the mid-node just as a result of 

the buckling of each core member. 

(a) Rod diameter 0.5 mm (b) Rod diameter 1 mm (c) Rod diameter 1.5mm 

   

   

Figure 5.26. Renders obtained from FE buckling simulations at the last step for differ-

ent rod diameters during shear loading 

5.4.2.2.1 Numerical results 

A summary of predictions according to the linear and non-linear simulations are 

provided in Figure 5.27. The extracted information shows that the cross-sectional area 

of the rods clearly influences the lattice -based shear core properties. In this way, the 

proposed rods diameter as 0.5 mm, 1 mm and 1.5 mm may attain different shear core 
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strengths as 0.548 MPa, 2.196 MPa and 4.95 MPa, respectively, when no bucking is 

considered, and strength as 0.159 MPa, 2.005 MPa and 7.991 MPa, respectively, 

when buckling is allowed in the simulations. Therefore, the expected failure modes are 

by Euler buckling of the 0.5 mm and 1 mm rods, and fracture of the 1.5 mm rod cores. 

The latter predictions did not contemplate the rod pull-out, and its average failure load 

will be only approximated via analytical approaches. 

Table 5.11 presents a summary of the FE results and the minimum stresses 

calculated by analytical approaches for core shear strength prediction. In this case, 

factor 𝑃𝑐𝑟𝑖𝑡
∗  identifies in the buckling load upon a unit cell due to shear loading. For the 

smallest rod diameter, it is predicted a failure mode as Euler buckling of the core mem-

bers and a core shear strength of 0.159 MPa. For this case, a little difference in the 

analytical prediction is found, because of the buckling coefficient employed for the cal-

culation (i.e., the theoretical seed value is k = 0.7 and the FE-simulation is calculated 

as k = 0.64 as seen in Figure 5.25.a). The k value is attained as an approximation from 

the predictions. Nevertheless, the real k value will be obtained by the experimental 

tests. The cores made from rods of 1 mm and 1.5 mm are predicted to experiment 

debonding as shown in the theoretical approaches. 

 

Figure 5.27. Summary of FE simulations for core shear strength predictions 
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Table 5.11. Core shear strengths from numerical and analytical approaches 

Ø 𝐿 𝑃𝑐𝑟𝑖𝑡* 𝜏𝑐* 𝜏𝑐** 𝜏𝑐*** Expected failure 
mode (mm) (mm) (kN) (MPa) (MPa) (MPa) 

0.5 17.96 51.6 0.159 0.548 0.1361 Euler buckling 

1 17.96 649.9 2.005 2.196 1.001 Rod pull-out 

1.5 17.96 2578 7.991 4.954 1.507 Rod pull-out 

Notes: (*) Non-linear static simulation, (**) Linear static simulation, (***) Analytical. (1) 

calculated using k = 0.7 

5.5 Experimental tests 

Mechanical properties of the proposed lattice-based cores are evaluated by 

standards ASTM C365 [175] and ASTM C273 [167]. A Zwick / Roell Z150 screw-driven 

universal testing machine is employed for testing at controlled room temperature.  

5.5.1 Compressive tests 

The test set-up is similar as used in section 4.5.1, incorporating in this case two 

displacement transducers type HBM W5TK, for compensating potential misalignment 

of the sample to the compression plates (Figure 5.28). The crosshead speed is set to 

0.5 mm/min. Three specimens of each core type are employed for testing (Figure 5.5), 

where the main sample dimensions are 65 x 65 x 25.4mm. 

 

Figure 5.28. Set -up used for compression tests 
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5.5.1.1 Compressive test results 

Representative charts showing compressive stress vs. strain and local elastic 

modulus vs. strain of the different cores proposed are presented in this section. The 

core area used for the calculations of the elastic moduli and strengths is of 3 by 3 unit-

cells, employing an average core thickness of 25.4 mm for evaluating the straining. 

Considering that different failure behaviour is observed for each core type, descriptions 

of each core response are provided with support on relevant event points as follows. 

The first analysed case comprises rod´s diameter 0.5 mm (Figure 5.29). At the 

beginning of the test, the core shows a linear response followed by little changes in the 

slope, denoting a not uniform load distribution. Small defects on the sample are evident 

also like the small drops in the elastic modulus (point 2, Figure 5.30), negatively affect-

ing the overall performance of the core, due to overloading of the remaining rods and 

possibly subjected to local buckling. The failure step is reached at point 3, where elastic 

buckling denotes the dominant failure mode. The latter observation is also supported 

by the fact that the load does not drop suddenly, but gradually with an evident negative 

slope with a large straining until reaching the ultimate strain and the structure fails. 

The case for rod´s diameter 1 mm is exhibited in Figure 5.31. After the take-up 

of slack and seating of the specimen, a linear region is seen as the load reaches point 

II. Local failure in form of rod´s Euler buckling is observed upon this point (Figure 5.32), 

also detected as the evident local drop in the elastic modulus. After point II, the load 

continues to increase at a smaller rate until tops out at point III, where photographs 

give evidence of the rod´s buckling and being the failure mode associated. The col-

lapse of the structure develops subsequently going over to a negative stress slope 

which maintains upon the straining until reaching its maximum deformation. 

The last case as rod´s diameter 1.5 mm (Figure 5.33) presents an evident 

Hookean region at the beginning of loading, until point II. At this point, the sudden drop 

in the elastic modulus and the local variation of the load curve indicates local failures, 

and in this case, in form of rod´s fracture (Figure 5.34). After point II, the increase of 

the stress carries over into its maximum at point III, after which the structure collapse 

due to rod´s crushing. After failure, the stress curve steps down continuously over the 

strain until the end of the test.  
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Figure 5.29. Measured compressive stress-strain response of lattice -based core with 

0.5 mm rods 

 

Figure 5.30.  Photographs associated with selected points: compressive behaviour of 

lattice-based core with 0.5 mm rod 

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0

50

100

150

 Compressive stress

 Local Young´s modulus

C
o
m

p
re

ss
iv

e
 s

tr
e
ss

 (
M

P
a
)

II

I

III

Strain

 L
o
ca

l Y
o
u
n
g
´s

 m
o
d
u
lu

s 
(M

P
a
)



5. Ultra-lightweight lattices made from CFRP rods                                                 177 

 

 

Figure 5.31. Measured compressive stress-strain response of lattice -based core with 

1 mm rods 

 

Figure 5.32. Photographs associated with selected points: compressive behaviour of 

lattice-based core with 1 mm rod 
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Figure 5.33. Measured compressive stress-strain response of lattice -based core with 

1.5 mm rods 

 

Figure 5.34. Photographs associated with selected points: compressive behaviour of 

lattice-based core with 1.5 mm rod 
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The compressive stress vs. strain charts for the best lattice-based cores re-

sponse proposed are presented in Figure 5.35. The difference among the curves is 

evident both regarding to the strength values and the curve´s form, due to the change 

in the cross-sectional area and the rod´s rigidity. The maximum strengths obtained are 

of 0.24 MPa, 2.88 MPa and 6.23 MPa for rod´s diameters varying 0.5 mm, 1 mm, and 

1.5 mm, respectively. The smaller diameters exhibited a similar response (see also 

Figure 5.29 and Figure 5.31 for better details) after topping out the maximum value, 

both showing a sustained straining although with a negative slope, until the collapse 

of the structure. In contrast, the 1.5 mm case showed a sudden drop in stress after its 

maximum, and a continuous failure of the material as it is compressed until the end of 

the test is reached. 

 

Figure 5.35. Compressive stress–strain response of lattice-based cores 

5.5.1.2 Discussion  

A model validation is addressed within this section for the compressive studies. 

The analytical and FE models presented a successfully correspondence with the ex-

perimental tests, where the main governing failure mechanisms are found as: Euler 

bucking and rod´s fracture, in correspondence with the foreseen results shown in the 

predictions (Table 4.7). 
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A comparison of the predicted values and those obtained from the compressive 

tests is presented in Table 5.12. The analytical models for the failure study took as a 

reference an average Euler factor k = 0.7, so that very small discrepancies from the 

numerical value occur. By adjusting the k-values from the FE simulations, the models 

could be further accurate to the results obtained. Even so, the failure values predicted 

by the models are in excellent correlation with the experimental values, noting the pre-

dicted failure modes as well. Looking at the elastic moduli, the standard deviations are 

relatively high. This suggests manufacturing defects. These may cause a misdistribu-

tion of compressive loads, causing some of the cells to be overloaded more than oth-

ers, or initially only some of the cells to bear the load. This assumption is also sup-

ported by the misalignment of the skins with respect to the compression plates pre-

sented in Figure 5.30, Figure 5.32, and Figure 5.34. 

Table 5.12. Resume of analytical, FEM and experimental results from compressive 

tests 

Ø 
(mm) 

Analytical   Numerical   Experimental  

𝜎𝑐𝑝𝑘 

(MPa) 

𝐸𝑐 
(MPa) 

 
𝜎𝑐𝑝𝑘 

(MPa) 

𝐸𝑐 
(MPa) 

 
𝜎𝑐𝑝𝑘 

(MPa) 

𝐸𝑐 
(MPa) 

Obs. 
mode 

0.5  0.193 99.05  0.187 100.65  0.22 ± 0.006 33.91 ± 3.96 BF 

1 3.098 396.89  2.670 403.95  2.87 ± 0.011 267.8 ± 17.83 BF 

1.5 7.009 895.59  6.981 909.19  5.87 ± 0.314 472.55 ± 119.04 RF 

Notes: BF = buckling failure; RF = fracture failure 

 Recalling the predicted failure main mode charts regarding to the compression 

stress as function of the rod´s diameter, Figure 5.36 is presented for complementing 

Table 5.12 while considering only the failure mode proposed. The maps have omitted 

the rod´s push-out (see Annex D), given the support of the external skins of thickness 

𝑡2 and the loading plates (Figure 5.22). The predicted strengths of the different lattice 

cores are expressed as the dots upon each rod case analyzed. In particular, according 

to the theoretical model represented, the case for 1 mm rods set down a point over a 

frontier between failure zone and thus, it could present either buckling failure, fracture 

failure, or mixed. Referring to its experimental and numerical data, it is concluded that 
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the acting failure mode is Euler buckling. The other rod cases are also exhibited in the 

charts, positioning the dots according to the predictions in each area assessed. 

 

Figure 5.36. Resulting failure maps for compressive stresses and experimental data 

5.5.2 Shear tests 

Typical plate-shear test set-up following the line-up of the standard ASTM C273 

is shown in Figure 5.37. The samples are attached to the steel-plates via adhesive and 

cure, assuring the main diagonal of the core parallel to the line load as pointed out in 

previous chapter. The employed length-to-thickness ratio is in average of 8:1. The rate 

of the cross-head displacement is set by 0.5 mm/min, and the core straining is meas-

ured by a displacement transducer HBM W5TK. The tests specimens are dimensioned 

to a size of 200 x 100 x 25.4 mm (Figure 5.6). Two specimens for each core shear 

sample have been provided by the UniBwM at laboratory-scale. Consequently, it is 

necessary the manufacturing and testing of more test specimens as future work to 

better satisfy the statistical analyses if required. Nevertheless, good repeatability is 

observed between the tests and therefore, are presented in this section. 
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Figure 5.37. Photograph of the plate-shear test set-up 

5.5.2.1 Shear test results 

The shear test responses of the cores proposed identified different failure mode 

for each core case. In this section, a description differentiating each core case in indi-

vidual charts is provided. Individual points at relevant events are set into the charts, 

referring to the correspondent response photographs. Additionally, a common graphic 

compares the behaviour of the cores. In general, local failures are observed before 

reaching the maximum core shear strength.  

Figure 5.38 represents the shear response of a lattice core based on 0.5 mm 

rod´s diameter. A linear behaviour is observed in the first stage of the test with a con-

stant ratio slope, also visible by the almost constant local Young´s modulus. After the 

maximum stress value is attained at point II, the rods reached the critical buckling load 

and began to buckle (Figure 5.39, point II). The bulking behaviour is also recognizable 

by the non-sudden change of slope on the stress and strain curve, until the maximum 

straining is reached and most of the cells experienced buckling failure of the rod mem-

bers. 
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Figure 5.38. Measured shear stress–strain response of lattice-based core with rod 

diameter 0.5 mm  

 

Figure 5.39. Photographs associated to selected points: shear behaviour of lattice-

based core with 0.5 mm rods 

 

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.00

0.05

0.10

0.15

0.20

0.25

0.30  Shear stress

 Local shear modulus

S
h
e
a
r 

st
re

ss
 (

M
P

a
)

II

I

Strain

0

20

40

60

80

100

120

140

  
L
o
ca

l Y
o
u
n
g
´s

 m
o
d
u
lu

s 
(M

P
a
)



  184                                5. Ultra-lightweight lattices made from CFRP rods  

 

 

Figure 5.40. Measured shear stress–strain response of lattice-based core with rod 

diameter 1 mm 

The case of Figure 5.40 shows the core shear behaviour of the 1 mm rod´s 

diameter. A Hookean region is easily identified at the beginning of the test, between 

point I and point II, with an almost constant slope ratio. At point II, a small step in the 

straining is seen, meaning a local failure of one or some of the core members. Refer-

ring to Figure 5.41, point II, local rod pull-out is identified on the videos due to the 

tension experienced by the rods. After point II, the change in slope and change in shear 

elastic modulus suggests as well that less members are bearing the load. At point III, 

more core cells fail locally due to the tensile stress on the rods and possibly local de-

fects. The failure is reached after point IV, where the remaining core members cannot 

bear more stress and fail in a sudden manner. On Figure 5.41, point IV, the failure due 

to truss pull-out is evident as the trusses are detached from the skins. 
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Figure 5.41. Photographs associated to selected points: shear behaviour of lattice-

based core with 1 mm rods 
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Figure 5.42. Measured shear stress–strain response of lattice-based core with rod 

diameter 1.5 mm 

The last case is represented by Figure 5.42 and Figure 5.43 for cores made 

from rods of 1.5 mm. A linear response is visible at the beginning of the test, with 

sustained slope until point II. At point II, local failure identified as truss-pull out occurs 

and less core members bear the stress as the change on the Young´s modulus is seen. 

The stress continues to increase, although with a small slope ratio and consequently 

a drop in the elastic modulus, until point III. When the maximum stress is reached, the 

structure then collapses suddenly by the detachment of core members from the skins. 

The truss pull-out is shown on Figure 5.43, point III. 
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Figure 5.43. Photographs associated to selected points: shear behaviour of lattice-

based core with 1.5 mm rods 

A comparison chart for the best core response is given in Figure 5.44 for the 

shear stress tests of the lattice-based cores proposed. The maximum shear strengths 

are obtained in the range of 1.26 MPa – 1.45 MPa for diameters 1 mm and 1.5 mm, 

respectively. Although both curves are similar in behaviour, the slope of the 1.5 mm 

curve is the steepest, as result of its higher rigidity. After reaching the maximum 

strength, a sudden drop in the stress-strain response is seen as a consequence of a 

detachment of the rods from the skins. In contrast, the smallest rod shows a different 

response to the shear stress as the curve changes its slope after topping out a strength 

of 0.3 MPa. The stress is maintained along the straining, until the core members col-

lapse due to buckling.  
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Figure 5.44. Shear stress–strain response of lattice-based cores 

5.5.2.2 Discussion  

After evaluating the mechanical response in shear, a model validation is carried 

out in this section. The dominant failure modes observed are Euler buckling and rod´s 

pull-out as a case of debonding, both predicted successfully by the analytical and FE 

models with very good correspondence. Table 5.13 summarizes the shear strength 

and shear moduli obtained from the predictions and the experimental tests. The shear 

elastic moduli predictions are in very good correspondence. The main discrepancies 

compared to the experimental values are attributed to little manufacture imperfections. 

Considering the core shear strength, the predictions agree with the experimental re-

sults for the 1 mm and 1.5 mm cases.  

However, a circumstantial difference between the predictions and the experi-

mental data is observed for the 0.5 mm diameter case. The theoretical buckling models 

considered a base value k = 0.7. Looking at the numerical simulations, the k value 

would be closer to ≈ 0.6 (Figure 5.25.a), and it would be a hint to assume that the 

predictions underestimate the test results. Hence, to better accurate the models and 

obtain an average experimental Euler´s factor k, the real failure loads are considered 

for the new calculations. Then, the failure loads are extracted from the experimental 
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data having an average failure load of ≈ 90 N per cell. Dividing it among the number of 

rods, employing Eq. (5.22), and equating for k, then k ≈ 0.5.  

Table 5.13. Resume of analytical, FEM and experimental results from shear tests 

 
Ø 
(mm) 

Analytical   Numerical   Experimental  

𝜏𝑐𝑝𝑘 

(MPa) 

𝐺𝑐 
(MPa)  

𝜏𝑐𝑝𝑘 

(MPa) 

𝐺𝑐 
(MPa)  

𝜏𝑐𝑝𝑘 

(MPa) 

𝐺𝑐 
(MPa) 

Obs. 
mode 

0.5  0.136 49.58  0.159 49.52  0.29 ± 0.01 45.85 ± 1.13 BF 

1 1.001 198.24  -- 198.32  1.06 ± 0.19 137.015 ± 10.58 DB 

1.5 1.507 447.46  -- 447.36  1.36 ± 0.095 232.591 ± 29.61 DB 

Notes: BF = buckling failure; DB = debonding failure 

 

Figure 5.45. Resulting failure maps for shear stresses and experimental data 

Recalling the failure maps due to shear loading (Figure 5.45), and incorporating 

the experimental data obtained for each rod case, the maps provide a further comple-

ment to the information presented in Table 5.13. The new curve for Eq. (5.39) but 

employing k = 0.5, is drawn as the magenta-continued line. Then, the point correspond-

ing to rod diameter 0.5 mm, coincides with the analytical curve. Moreover, observing 
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the debonding strength, the models are in excellent correspondence to the experi-

mental data, although little discrepancies are found on the top and lower values, on an 

average and constant gluing flank f of value 2 mm.  

5.6 Concluding remarks 

The design and study of different ultra-lightweight cores (core densities less than 

48 kgm-3) based on lattices is presented in this chapter. Three rods´ diameters are 

taken as a basis for the study of analytical micro-mechanical models and comple-

mented with numerical models. The peak mechanical strength to compression and 

shear is evaluated satisfactorily with very good correlation between the proposed mod-

els and experimental results. The little discrepancy detected is attributed to imperfec-

tions during the manufacturing of the samples, witnessed as premature local failures 

before the collapse of the structure. Furthermore, the failure maps for compressive and 

shear loading predicted satisfactorily the strength and failure mode exhibited by the 

cores, although further analyses shall be proposed for evaluating the entire map re-

gions and validating more accurately the models.  

As for the mechanical compression tests, average young moduli of 33.91 MPa, 

267.8 MPa and 472.55 MPa, and maximum compressive strengths of 0.22 MPa, 2.87 

MPa and 5.87 MPa are observed, for diameters of 0.5 mm, 1 mm, and 1.5 mm, re-

spectively. The observed failure modes are attributed to Euler buckling for the smaller 

diameters and fracture of the rods for the largest.  

With respect to the shear tests, an average peak shear modulus of 45.85 MPa, 

137.015 MPa and 232.591 MPa, and shear strengths of 0.29 MPa, 1.06 MPa and 1.36 

MPa are observed for rods´ diameters of 0.5 mm, 1 mm, and 1.5 mm, respectively. In 

this case, the dominating failure modes are Euler buckling for the case of the 0.5 mm 

rods, and debonding (pull-out) between the skins and the core regarding to rods´ di-

ameters of 1 mm and 1.5 mm. 

As observed in the numerical models, there is little difference in the displacement 

analysis either as a BCC or BCC-like structure. Actually, considering that the members 

in a BCC-like structure do not have a common coincident point (Fig. 5.2), this has an 

effect on the final stiffness of the rod´s mid-plane in vertical and horizontal directions, 

and may differ slightly for each rod´s diameter case, as predicted in the FE models. A 

way to adjust the k-value in the simulations is to provide torsion springs in the mid-
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plane node, which constant could be obtained indirectly from the analytical results. 

Another way is to simulate the middle node with bars of different stiffness such that 

they resemble the experimentally observed behavior. However, a good starting point 

was to assume a Euler k-factor of ≈ 0.7 for the theoretical analysis of buckling failure. 

The observed values obtained indirectly by the numerical and experimental FE makes 

the value of k to better fit each rod and loading case, improving the analytical prediction 

of buckling failure, as in the case of Figure 5.45. 

The next chapter explores the performance of these lattice-based core elements 

by incorporating them as part of a sandwich structure and analyzing them in a 4-point 

bending configuration to assess their suitability as a sandwich skin elastic bedding. 
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6 Ultra-lightweight sandwich panels: a case of 

study by four-point bending 

As previously pointed out in Chapter 3, the interest in sandwich constructions 

have been risen in the past years, as a way to obtained lighter, stiffer, and stronger 

structures. The basic concept of a sandwich panel is presented as a lightweight core 

interposed between two thin, rigid skins. For the production of an efficient sandwich 

structure, the core must serve different purposes: resisting out-of-plane compression 

and shear loads, and stabilizing the thin faces against local buckling, giving the neces-

sary support, as well as increasing the moment of inertia of the section [51,113,192]. 

The thinner the faces, the higher their buckling susceptibility.  

The significance of this section lies in the effectiveness of the proposed cores as 

skin stabilizers in their application in sandwich panels, taking as an example of analysis 

the lattice-based cores (Chapter 5), and extrapolating the case for the 3D-honeycomb 

cores (Chapter 4). The loading case is selected as four-point bending, in a way to 

evaluate pure flexural properties of the sandwich panel, and at the same time, avoiding 

shear and compressive loads over the core, already evaluated in previous mentioned 

chapters.  

Therefore, different face failure modes are presented and detailed, starting from 

the theory applied to the loading case and identifying failure modes as face wrinkling, 

intercellular buckling, and skin yielding. The agreement among the theory, FE simula-

tions and tests turns out to be satisfactory. 

6.1 Literature review 

Several approaches for studying sandwich constructions appear in the literature 

regarding to their failure, and he most relevant are here reviewed. The theory of bend-

ing of sandwich panels is widely explained throughout different analytical models. The 

first models by Reissner [193] considered a homogeneous core sandwiched between 

two isotropic faces, both identical in thickness and properties.  

Reissner assumed that the face-parallel stresses in the core and the variation of 

face stresses over the thickness of the faces are negligible, when the elastic moduli E 

and G of the core are small compared to the faces. Thus, he obtained the deflection 
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equations [194] and used them for solving a plate-buckling problem. Moreover, Hoff 

[195] made similar hypotheses and studied the buckling stress for rectangular sand-

wich panels subjected to edgewise compression. Hoff derived the differential equations 

obtained by virtual displacements and applied simply supported boundary conditions 

for obtaining the critical stresses for a family of curves as a function of a sandwich 

buckling parameter.   

Plantema [196] and Allen [113] proportionated the early basic literature for un-

derstanding sandwich behaviour under bending. Sandwich panels threated as beams 

with different cores and faces configurations were studied to predict their most likely 

operative failure modes during bending, among other loading configurations. They 

identified the failure modes of sandwich panels, comprising different forms of elastic 

and plastic buckling, as local and global buckling, face yielding, and other failures at-

tributed to the core (refer to Chapter 3). Petras [111] took the bases of Allen´s theory 

and studied the failure modes of sandwich panels with different substrates and faces 

and identified three main causes of failure of faces depending on their cell size as 

intercellular buckling, face wrinkling and face yielding, during bending loading.  

Likewise, within the framework of this thematic the author's previous publication 

[97] served as a prelude for determining the mechanical behaviour of traditional sand-

wich panels while bending, identifying the failure modes from determining in advance 

the failure loads of the sandwich components for different skin and core combinations. 

Following the insights provided by Petras and Triantafillou [144], traditional honeycomb 

cores made from natural fibres and polymeric foams, combined with glass and natural 

fibres skins were implemented. Based on this investigations, failure mode maps of the 

studied materials were drawn and validated for a density of 150 kgm-3 for different span 

configurations. 

The purpose of this chapter is to include into the dissertation analyses the over-

all performance of the lattice-based cores proposed and applied to a sandwich panel, 

while evaluating their bending capabilities as an elastic substrate to the CFRP faces. 

The scope of the upcoming sections is divided according to the following aspects: the 

design and manufacture of the samples, the theoretical background complemented by 

FE models to obtain the material failure mode maps, experiments on four-point bend-

ing, and the discussion of results. The case is then extrapolated to the 3D-honeycomb 

cores studied, which is evaluated analytically and numerically. The buckling coeffi-

cients for the buckling failure modes are obtained from the models and compared to 
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the ones gained from the experimental tests. The results show the influence of the core 

material and faces rigidity for a skin-core combination and their expected failure 

modes, with very good correspondence. 

6.2 Materials and design 

For the validation of the proposed analytical models that describe the behaviour 

of sandwich materials of interest under bending, the experimental tests must be carried 

out. Therefore, specimens have been obtained to serve for the evaluation of flexural 

sandwich panels and are detailed in this section. 

6.2.1 Materials 

The base materials employed are the same as for the cores and faces introduced 

in Chapter 5. Therefore, sandwich panels are provided from the UniBwM labs having 

CFRP-based cores and faces.  

Lattice-based cores made from three different CFRP rod diameters as 0.5 mm, 

1 mm, and 1.5 mm, are employed. Additionally, faces are made from four and six layers 

of woven T300-3k (Torayca) carbon fibre 2/2 twill fabrics in a symmetrical [0 – 90] ° 

setup. Epoxy resin and hardener “type L” (R&G Faserverbundwerstoffe GmbH) are 

employed as the polymeric matrix. Furthermore, the theoretical mechanical properties 

of the cores and faces are resumed in Table 6.1, and Table 6.2, respectively. The 

coordinate reference is given in Figure 6.1. 

Table 6.1. Theoretical mechanical properties of the lattice-based cores 

Ø  

(mm) 

𝜌𝑐
∗

  

(kgm-3) 

𝐸3𝑐   

(MPa) 

𝜎3𝑐   

(MPa) 

𝐺31𝑐 = 𝐺32𝑐   

(MPa) 

𝜏31𝑐 = 𝜏32𝑐 

(MPa) 

0.5 5.34 99.05 0.20* 49.58 0.136 

1 21.34 396.89 3.09* 198.24 1.029 

1.5 48.03 895.89 7.09 447.46 1.548 

Note: (*) A Euler´s factor k = 0.7 is taken for the buckling theoretical calculations 
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Table 6.2. Theoretical mechanical properties of the CFRP faces 

𝑁𝑙  

(--) 

𝑡𝑓   

(mm) 

𝜌𝑓
∗

  

(gcm-3) 

𝜑𝑓 

(%) 

𝐸2𝑓 = 𝐸1𝑓 

(MPa) 

𝐺12𝑓  

(MPa) 

𝜐12𝑓= 𝜐21𝑓  

(--) 

𝑅2𝑓
−  = 𝑅1𝑓

−  

(MPa) 

𝑅12𝑓 

(MPa) 

4 0.8 
1.485 55 67.78 4.06 0.028 527.44 110 

6 1.21 

Note: subscript s represents the parent material 

The faces´ thicknesses are selected in a way to maintain the conditions of thin 

faces (𝑡𝑓 << 𝐶, referred to reference [110])  and still being technologically manufactur-

able as a quasi-monolithic structure in the form of a sandwich panel.  

Therefore, the faces presented average thicknesses of 𝑡𝑓 = 0.8 ± 0.05 mm and 

𝑡𝑓 = 1.21 ± 0.04 mm, while average densities of 1.422 gcm-3 and 1.440 gcm-3 both 

being measured in the laboratory, for a four- and six-layers’ composites, respectively. 

The exhibited discrepancies between predictions and experimental results are attribut-

able to imperfections as entrapped gas introduced during the manufacturing process.  

In the case of the face material with four layers, an average fibre volume content 

of 55 % is obtained, and for the case of six layers, an average fibre volume content of 

54.4 % is calculated. To lighten the theoretical and numerical calculations, it will be 

considered that both faces have on average ≈ 55 % of fibres, since they are found 

almost in the same value order. Then, the faces mechanical properties are pre-esti-

mated based on the classical laminate theory (see Annex B for further details).  

6.2.2 Bending sample design 

The four-point bending sandwich specimen is designed in such a way that bend-

ing is evaluated by means of a constant flexural moment across the specimen´s area 

of interest. The bending moment is obtained from two opposing supports located at a 

known distance from each other (i.e., the lever arm) and symmetrically arranged on 

each side of the sample (Figure 6.1).  

Therefore, the shear loads are ideally placed over a reinforced core, in this case 

plywood, and the sample is subjected to tensile and compressive stresses on the outer 

facings due to the bending exerted. The objective of this section is to present the de-

signed specimen used for the analytical and numerical calculations (Figure 6.1) to in-
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vestigate the failure behaviour of the sandwich configuration. The beam is simply sup-

ported on two bottom rests of diameter 𝐷𝐬, and the load is transmitted by two supports 

(or punches) of the same diameter on the top of the beam. The loads are schematically 

drawn as the red arrows over and under the supports. 

     

Figure 6.1. Sketch of the four-point bending sample proposed 

(a) Rod diameter 0.5 mm 

 

(b) Rod diameter 1 mm 

 

(c) Rod diameter 1.5 mm  

 

Figure 6.2. Photograph of bending samples of different lattice-cores´ rod diameters 
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The specimen consists of a lattice-core of 25.4 mm of thickness, in an array of 

6 x 3 unit cells. The faces and support plywood core are added and fixed to the as-

sembly. The overall dimensions of the samples are of [490 x 65 x 27] mm and [490 x 

65 x 27.82] mm. The samples attained for the different lattice-cores are shown in Fig-

ure 6.2. 

Table 6.3. Overview of the geometric parameters and nominal dimensions employed 

Rod 
diameter 

C tf L1 L2 L3 L4 L5 b1 Ds 

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

0.5 25.4 1.21 150 170 470 192 110 65 50 

1 25.4 0.8 150 170 470 192 110 65 50 

1.5 25.4 0.8 150 170 470 192 110 65 50 

The different parameters presented in Figure 6.1 are further examined in Table 

6.3, having the core´s different rods diameters as main factor. In all cases, the lever 

arm employed for the flexural moment is L1= 150 mm. The upper span in which the 

external load is applied, also known as the punch, is selected as of L3= 470 mm. The 

supports have a diameter of 50 mm, in order to avoid localized loads that could lead 

to local rupture. 

6.3 Theoretical approach 

Referring to Chapter 3, different are the failure modes that can occur in the faces 

of a sandwich structure depending on the loading case. In this section, four-point bend-

ing is analysed, it is proceeded first to interpret the state of load introduction and max-

imum displacement derived from geometrical studies. Such as the cases of open pro-

file´s torsional buckling stated in Chapter 4 or the Euler´s rod buckling behaviour intro-

duced in Chapter 5, other stability problems can also occur within supported plates that 

are subjected to compressive loads, e.g., face wrinkling or intracellular buckling. 

Given the designed CFRP-based plates (Table 6.2), for calculations, faces will 

be considered as orthotropic plates with edges parallel to the orthotropic axes, sub-

jected to axial stresses in tension or compression. Besides face yielding/fracture fail-

ure, other failure modes as local forms of instabilities as face wrinkling and intercellular 

buckling, will be introduced and described. 
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6.3.1 Loading case 

The sketch of Figure 6.1 is simplified to a case of a beam subjected to four-point 

bending, and it is outlined in Figure 6.3. The straight (filled-line) and bended (dotted-

curve) beam is shown, as well as the load introduction. Then, the load is applied by 

the testing machine as force 𝑃𝑧 on the top of the beam and it is divided over two upper 

punches on points a and d. For the determination of the stresses and displacements 

caused by the external force over the sample, the shear and acting moment diagrams 

are drawn. Given the selected configuration, the shear stress does not affect the area 

of interest of the beam (segment 𝑏𝑐̅̅ ̅) where the lattice core is located. Then, the applied 

force is transmitted to the beam as a constant bending moment, between the supports 

b and c.  

 

Figure 6.3. Sketch of the shear and flexural moment diagrams of a beam in a four-

point bending case 

The maximal shear and moment values from the diagrams are given by 

Eq.(5.1), Eq. (6.2) and Eq. (6.3), respectively. 

𝑄𝑎 = 𝑄𝑑 = −
𝑃𝑧
2

 (6.1) 
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𝑄𝑏 = 𝑄𝑐 =
𝑃𝑧
2

 (6.2) 

𝑀𝑏 = 𝑀𝑐 = −
𝑃𝑧
2
𝐿1 (6.3) 

Taking a portion of the beam between the support links as an example, the 

beam modelled for load analyses is sketched as the diagram given in Figure 6.4. 

(a) (b) 

  

Figure 6.4. Scheme of a portion of a beam with the decomposition of the flexural mo-

ment into forces on the skins 

Considering the study configuration, due to the transmission of the moment 𝑀𝑥, 

the top skin is subjected to a tensile load 𝐹𝑓 and the lower skin to compression load 𝐹𝑓, 

both of same value, but in opposite directions. This description will then be used to 

analyse the different expected failure modes. Then, considering thin faces (𝑡𝑓 << 𝐶), 

simplifications such as constant stresses through the face thicknesses are also allowed 

(see Chapter 3). Thus, the forces are applied to the mid-planes of each top and bottom 

faces, as they are considered of little thickness. The relation between the load on the 

faces and the bending moment is given by Eq. (6.4). Then, solving for 𝑃𝑧, the applied 

load is defined in terms of load over the faces as Eq. (6.5).  

𝜎1𝑓 =
𝐹𝑓

𝑏1𝑡𝑓
=
𝑃𝑧
2

𝐿1
𝑑𝑏1𝑡𝑓

 (6.6) 

𝐹𝑓 =
𝑀𝑥
𝑑
=
𝑃𝑧
2

𝐿1
𝑑

 (6.4) 

𝑃𝑧 =
2𝑑𝐹𝑓

𝐿1
 (6.5) 
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The stress on the faces 𝜎1𝑓 is defined by Eq. (6.6), as the force applied to the 

faces divided by the face cross-section. Analogously, Eq.(6.6) is attainable from an-

other point of view, for the case of the beam subjected to a bending moment 𝑀𝑥 (Figure 

6.4). The bending stress 𝜎𝑥𝑥 is then the stress applied normal to the face thickness 

𝜎1𝑓, assuming thin plates, as given in Eq.(6.7). 

𝜎1𝑓 = 𝜎𝑥𝑥 = 
𝑀𝑥𝐸1𝑓𝑑

2𝐷𝑥
 (6.7) 

Where 𝐷𝑥 is given by Eq. (6.8), also assuming thin faces as 𝑡𝑓 << 𝐶 and a weak 

core as 𝐸3𝑐 << 𝐸1𝑓 as seen in Chapter 3.  

𝐷𝑥 ≈ 𝐸1𝑓
𝑏1𝑡𝑓𝑑

2

2
 (6.8) 

Introducing Eq. (6.4) and Eq. (6.8) into Eq. (6.7), then Eq. (6.9) is attained, and 

confirming Eq. (6.6). 

𝜎1𝑓 = 
𝑃𝑧𝐿1
2𝑏1𝑡𝑓𝑑

 (6.9) 

6.3.2 Maximum displacement 

The maximum displacement w between supports b and c can be quantified at 

the equilibrium configuration, considering a fictitious unit-load at the site and direction 

of interest. It is also found in the literature as the unit-load method, [67,169]. The 

method is implemented by defining the acting forces on the beam, both real (subscript 

“0”) and fictitious (subscript “1”) given by Eq. (6.10) 

𝑤 = ∫
𝑀0𝑀1
𝐸𝐼

𝑑𝑥 (6.10) 

Since the beam is made up of different materials such as the core and the skins, 

the flexural stiffness 𝐸𝐼 is replaced by its equivalent 𝐷𝑥 given by Eq. (6.8), assuming 

thin faces and a weak core, as previously pointed-out.  

Solving for the present case, the maximum displacement w is given by Eq. 

(6.11) (see Annex E for the complete procedure). 

𝑤 =
𝑃𝑧
16

𝐿1
𝐷𝑥
(𝐿3 − 2𝐿1)

2 =
𝑃𝑧
16

𝐿1
𝐷𝑥
(𝐿2)

2 (6.11) 
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6.3.3 Failure modes, loads and stresses 

The sandwich panels failure under four-point bending loading is attributed to in-

plane loads at the end of the faces, being one of them subjected to tensile loads and 

the other one to compressive loads (Figure 6.4) as a consequence of the flexural mo-

ment applied. It will be considered that the compressed face is the critical one for eval-

uating failure. Then, the govern failure modes are expected as: (a) face yielding, (b) 

face wrinkling and (c) intracellular buckling, and they are introduced within this section 

[51,111,113] (Figure 6.5). 

Figure 6.5. Failure modes of sandwich faces considered 

Since the material properties of the constituent materials are given, the failure 

load can be analytically addressed, and are described within this section [51]. In this 

work, it is assumed a linear-elastic material behaviour and that the sandwich beams 

bend in a cylindrical manner [113]. The faces are loaded as consequence of the bend-

ing moment 𝑀𝑥 due to the applied load 𝑃𝑍 as shown in Eq. (6.4) and Eq. (6.5). Thus, 

the failure load will be also presented in terms of applied load 𝑃𝑍. Therefore, failure 

loads comprise the above failure modes as face yielding 𝑃𝑍𝑌, wrinkling 𝑃𝑍𝑊, and inter-

cellular buckling 𝑃𝑍𝐼𝐵. The acting failure mode is given by the lowest critical load applied 

𝑃𝑍𝑐𝑟𝑖𝑡 as shown in Eq. (6.12).  

𝑃𝑍𝑐𝑟𝑖𝑡 = 𝑚𝑖𝑛( 𝑃𝑍𝑌, 𝑃𝑍𝑊, 𝑃𝑍𝐼𝐵) (6.12) 

6.3.3.1 Face yielding 

Sandwich panel skins may fail due to a tensile or compressive stress. If the 

compressive face is considered as critical for the analysis, the failure of the plate under 

compressive loading could be attributed, in some cases and under certain conditions 

(e.g., boundary constraints, face thickness, type of support, among others) to a 

(a) Face yielding (b)  Face wrinkling (c)  Intracellular buckling 
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strength failure and not to elastic instabilities. Then, the failure of the skin due to yield-

ing (Figure 6.5.a) is expected when the applied stress 𝜎1𝑓 reaches the maximum al-

lowable in-plane strength (𝑅1𝑠
− ), either as yield stress or fracture stress of the face´s 

base material as given in Eq. (6.13) [51].  

𝜎1𝑓𝑐𝑟𝑖𝑡 ≥ 𝑅1𝑠
−  (6.13) 

In this work, faces are made from composite materials based on woven carbon 

fibre cloth and epoxy resin. Since the composite tensile strength is considered to be 

larger than the compressive strength, the compressed face is then taken as the critical 

face. Therefore, assuming that the failure of the plate in compression is due to strength, 

different failure mechanisms can occur depending on the approximation criteria (chap-

ter 2) [56]. Here, Budiansky's criteria is selected to obtain the maximum compressive 

strength of the base material (Annex B) [57]. 

 Recalling Eq. (6.9) and considering the critical stress, when the maximum in-

plane strength is reached (Eq. (6.13)), the critical stress on the face due to yielding is 

given by Eq. (6.14).  

𝜎1𝑓𝑐𝑟𝑖𝑡 = 𝜎1𝑓𝑌 = 
𝑃𝑧𝐿1
2𝑏1𝑡𝑓𝑑

≥ 𝑅1𝑠
−  (6.14) 

Solving the last expression for 𝑃𝑧, the critical applied load considering face yield-

ing failure mode is given by Eq. (6.15). 

𝑃𝑍𝑌 = 
𝑅1𝑠
− 2𝑏1𝑡𝑓𝑑

𝐿1
 (6.15) 

6.3.3.2 Face wrinkling  

A long, thin, and rigid plate subjected to compression stresses may experience 

instability or local buckling phenomena (Figure 6.6) [197]. One of the local buckling 

cases on sandwich panels is attributed to wrinkling of the face sheet. This failure mode 

is associated with elastic buckling of faces exhibiting short buckling waves (Figure 

6.5.b), although not confined to individual unit cells when using prismatic cores [198]. 

The wrinkles are correlated to periodic waves of a wavelength that depends upon the 

material properties and other geometrical parameters as core and face thicknesses 

[51,199].  
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Figure 6.6. Plate under compressive in-plane stress before and after buckling 

Face wrinkling on sandwich panels can be seen as the buckling of a thin column 

supported by a continuous elastic medium such as the core that offers a support pres-

sure 𝜎𝑧 (Figure 6.7, adapted from [200]). The wrinkle occurs perpendicular to the prin-

cipal acting stress. 

(a) Wrinking wave sketch  (b) Winkler foundation: rigid case 

 

 

Figure 6.7. Face wrinkling wave and Winkler foundation 

The simplest model is based on a Winkler´s foundation model, which is estab-

lished on a series of linear tension-compression springs of a known elastic constant 

and spaced a certain distance. Then, the foundation stiffness 𝐾𝑧 is the ratio given in 

Eq. (6.16) [51]. 

𝐾𝑧 = 
2𝐸3𝑐
𝐶

 (6.16) 

There are different wrinkling cases depending on the geometry of the sandwich 

panel and base material features [200]. The rigid base wrinkling case refers to a case 
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in which one face is subjected to a compressive stress (Figure 6.7.b), denoting a sand-

wich panel loaded in bending, as in the present work. By neglecting the shear defor-

mation in the skin and core while assuming thin faces and very low core Young´s mod-

ulus in x-direction (e.g., an orthotropic core such as a honeycomb core), the expression 

in Eq. (6.17) represents the formulation for the critical stress on the face that results 

from Winkler´s approach [51], where 𝑄𝑏 is a dimensionless buckling coefficient, in 

which 𝑄𝑏 = 0.8165 for this case.  

𝜎1𝑓𝑐𝑟𝑖𝑡 = 𝑄𝑏√
𝐸3𝑐𝐸𝑓𝑡𝑓

𝐶
 (6.17) 

For providing better practical means for the prediction of face wrinkling, a 

coefficient 𝑄𝑏 = 0.33 is selected to offer a proper safer design value for practical 

popuoses [198]. The subtantial difference between above 𝑄𝑏 values are attributed 

when imperfections are considered. 

If the core is assumed to be isotropic, other wrinkling models may be employed, 

such as the Hoff´s approach [201]. Hoff takes into account the shear stress in the core, 

whose method calculates the strain energy stored on the core and the face. Then, the 

critical face stress using an isotropic cores and faces is given by Eq. (6.18), and a 

factor 𝑄𝑏 = 0.91 is reached for this case.  

𝜎1𝑓𝑐𝑟𝑖𝑡 = 𝜎1𝑓𝑊_𝑖𝑠𝑜 = 𝑄𝑏√𝐸3𝑐𝐸𝑓𝐺12𝑐
3

 (6.18) 

On the other hand, Allen [113] derived a formula from calculating the differential 

equation of a homogeneous beam. If isotropic cores and faces are to be considered, 

the same formula as Eq. (6.18) was obtained, although a 𝑄𝑏 factor of 0.78 was attained 

[51]. However, as indicated in references [51,198], in the practice a safer desing factor 

𝑄𝑏 = 0.5 was derived to better accurate experimetal tests and the theory developed 

taking in consideration imperfections, and the formula in Eq. (6.18) turns to be more 

conservative when the latter 𝑄𝑏value is applied. 

Thefore, the formulations for face wrinkling determination depend mainly on the 

type of cores, faces, and the buckling coeffcient 𝑄𝑏 may vary from [0.33 – 0.86] and 

[0.5 – 0.91] for orthotropic and isotropic cores, respectively (Table 6.4). In addition, it 

is observed in Table 6.4 that the skins employed for analyses are isotropic in all the 
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cases. As noticed in the reference [202], if anisotropic faces are to be used, the orien-

tation angles of the fibres must be considered on the failure load calculations. The 

procedure of the transformation of coordinates considering the orientation angles is 

given in Annex E.  

Table 6.4. Brief literature review on different buckling coefficient values 

Method/ 
author 

Reference Core type Face type 
Buckling coefficient 𝑄𝑏 

Eq. (6.17) Eq. (6.18) 

Winkler [51] Orthotropic Isotropic 0.8165* -- 

Bartelds [203] Orthotropic Isotropic 0.8600* -- 

Sullins [198] 
Orthotropic/ 
Isotropic 

Isotropic 0.3300** 0.500** 

Hoff [201] Isotropic Isotropic -- 0.910* 

Platema [51] Isotropic Isotropic -- 0.825* 

Allen [113] Isotropic Isotropic -- 0.780* 

Notes: (*) Theoretical values. (**) Estimated values considering imperfections 

The failure stress under Winkler´s approach is set by Eq. (6.19), when ortho-

tropic cores and orthotropic homogeneous faces are employed. The constant factors 

are expressed as a part of the buckling coefficient 𝑄𝑏. 

𝜎1𝑓𝑐𝑟𝑖𝑡 = 𝜎1𝑓𝑊 = 𝑄𝑏√
𝐸3𝑐𝐸1𝑓𝑡𝑓

𝐶
 (6.19) 

It is interesting to remark, that the last expression is equivalent to Eq. (6.17) for 

isotropic faces. In another case, if thin inhomogeneous faces are to be employed, the 

flexural rigidity of the laid-up laminate (i.e., stacking-up UD-laminas) shall be taken as 

well from the classical laminate theory as the [D]-matrix or the bending stiffness matrix 

(Chapter 2). 

The proposed cores made of lattices resemble an orthotropic core, closer to the 

characteristics of a corrugated core than a foam in terms of skin foundation, when 

considering the free spaces where the skin lacks on support. The faces resulted in an 

orthotropic material with a symmetrical lay-up of woven fabrics aligned with the global 

coordinate system. Hence, the expression given by Eq. (6.19) for orthotropic cores and 

faces will be employed for face wrinkling studies. Moreover, the buckling coefficient 𝑄𝑏 

must be also determined, and which can vary between 0.33 - 0.86 if one recalls Table 
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6.4. Therefore, the stress on the face as given in Eq. (6.9) is then equated to Eq. (6.19) 

to obtain the critical stress on the skin as Eq. (6.20). 

𝜎1𝑓𝑐𝑟𝑖𝑡 = 
𝑃𝑧𝐿1
2𝑏1𝑡𝑓𝑑

= 𝑄𝑏√
𝐸3𝑐𝐸1𝑓𝑡𝑓

𝐶
 (6.20) 

 Solving Eq. (6.20) for 𝑃𝑧, the critical applied load considering face wrinkling fail-

ure mode is given by Eq.(6.21). 

𝑃𝑍𝑊 = 𝑄𝑏√
𝐸3𝑐𝐸1𝑓𝑡𝑓

𝐶

2𝑏1𝑡𝑓𝑑

𝐿1
 (6.21) 

6.3.3.3 Intracellular buckling 

When sandwich panels with corrugated or honeycomb cores are employed, the 

core does not constitute a continuous support, i.e., there are areas of the face where 

the core does not offer any foundation nor support to it. If the face buckling wavelength 

is equal or smaller to the cell size, another localized buckling mode may take part in 

the form of so-called intracellular buckling (also known as face dimpling). In this case, 

the facings buckle inwards or outwards the unit cell, such in a plate-like way with the 

cells walls acting as the edge supports [51,198].  

The effect of intracellular buckling is more evident when using, for example, 

square-cell cores made of large cell sizes (Figure 6.8.a). In general, for honeycomb 

cores an empirical formula as Eq. (6.22) have been given by Norris [204] for obtaining 

the critical stress on the compressed isotropic face, employing a characteristic dimen-

sion as the cell size in form of the diameter of their inscribed circle 𝑆𝑐. 

𝜎1𝑓𝑐𝑟𝑖𝑡 = 
2𝐸𝑓

1 − 𝜐12𝑓
2 (

2𝑡𝑓

𝑆𝑐
)
2

 (6.22) 

Nevertheless, when cores with open cells are employed such as corrugated 

cores (Figure 6.8.b), the intracellular buckling may take place in the part of the sheet 

contained within the corrugation.  

For orthotropic faces with edges parallel to the orthotropic axes, the case is 

simplified into a plate of certain dimensions under compressive line loads 𝑝𝑥 on two 

ends, and subjected to edge conditions, represented by a tabulated factor 𝐾. Then, the 
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expression in Eq.(6.23) is employed for estimating the critical line load 𝑝𝑥𝑓𝑐𝑟𝑖𝑡 on the 

face [68], assuming a plate that bends cylindrically.  

(a) Square-cells core (b) Corrugated core 

  

Figure 6.8. Intracellular buckling shapes on different cellular cores [205] 

𝑝𝑥𝑓𝑐𝑟𝑖𝑡 =  𝐾𝜋
2
√𝐵𝑥𝑓𝐵𝑦𝑓

𝑏2
 (6.23) 

𝐵𝑥𝑓 = 
𝐸1𝑓𝑡𝑓

3

12(1 − 𝜐12𝑓2)
 (6.24) 

𝐵𝑦𝑓 = 
𝐸2𝑓𝑡𝑓

3

12(1 − 𝜐12𝑓2)
 (6.25) 

Where 𝐵𝑥𝑓 and 𝐵𝑦𝑓 are the bending stiffnesses of the plate in x- and y-direction, 

respectively. The latter formulation is also expressed in terms of critical stress as Eq. 

(6.26). 

𝜎1𝑓𝑐𝑟𝑖𝑡 = 𝜎1𝑓𝐼𝐵 =  𝐾
𝜋2√𝐸1𝑓𝐸2𝑓

12(1 − 𝜐12𝑓2)
(
𝑡𝑓

𝑏
)
2

 (6.26) 

The factor 𝐾 in Eq. (6.26) is presented on Annex E for different border conditions 

cases along plate edges, for isotropic and orthotropic plates [171,173]. For example, 

when using square orthotropic plates, 𝐾 values are found of 2.2 (4) for all edges simple 

supported, and of 4.6 for loaded edges clamped and unloaded edges simply sup-

ported. As previously stated, since the composite faces are made from a woven carbon 

fibre cloth oriented [0/90] ° they are treated as orthotropic. Thus, for evaluating intra-

cellular buckling, the formula given by Eq. (6.26) will be considered for calculations. 

 

(4) The value is attained for length / width ratios 
𝐿

𝑊
 = 1. If infinite long plates are assumed, the K values 

converge to a value ≈ 2 



  208                                                      6. Ultra-lightweight sandwich panels 

 

Hence, equating Eq. (6.9) and Eq. (6.26), the critical stress on the compressed face 

sheet is determined by Eq. (6.27). The general expression for the cell´s width b is 

replaced by the width W (or cell size) used in this work.  

𝜎1𝑓𝑐𝑟𝑖𝑡 = 
𝑃𝑧𝐿1
2𝑏1𝑡𝑓𝑑

=  𝐾
𝜋2√𝐸1𝑓𝐸2𝑓

12(1 − 𝜐12𝑓2)
(
𝑡𝑓

𝑊
)
2

 (6.27) 

Solving Eq. (6.27) for the applied load 𝑃𝑧, the expression for evaluating intercel-

lular buckling failure of the face sheet is given by Eq. (6.28). 

𝑃𝑍𝐼𝐵 =  𝐾
𝜋2√𝐸1𝑓𝐸2𝑓

6(1 − 𝜐12𝑓2)
(
𝑡𝑓

𝑊
)
2 𝑏1𝑡𝑓𝑑

𝐿1
 (6.28) 

In this work, the core unit cells are square, and so is their projection on the top 

and bottom face planes. The faces are made from orthotropic plates. Since the face 

portion at the top of the unit cells are only supported at their corners by the CFRP rods 

as punctual supports and not along their edges (Figure 6.9), no representative tabu-

lated 𝐾 values are found in the literature. However, a seed 𝐾 value of 2.2 (see Annex 

E) will be employed for the analytical calculations as starting point.  

 

Figure 6.9. Sketch of unit cell projections to face planes and punctual supports 

6.3.3.4 Analytical results 

A summary of the analytical results are detailed in the Table 6.5 for failure stress 

predictions. The calculations are made employing Eq. (6.14) for face yielding failure 

mode, Eq. (6.19) for face wrinkling, and Eq. (6.26) for intracellular buckling. The pa-

rameters employed are also given, employing a core thickness 𝐶 = 25.4 mm in all 
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cases. The minimum stresses and thus, the failure modes with high probability to occur 

are face wrinkling for core / skin combination of 0.5 mm lattices and 𝑡𝑓 = 1.21 mm, and 

intracellular buckling for the lattice cores of 1 mm and 1.5 mm rods combined with 𝑡𝑓 = 

0.8 mm skins. 

Table 6.5. Summary of face critical stresses from analytical predictions 

Ø 𝑡𝑓  𝐸3𝑐  
𝐸1𝑓= 

𝐸2𝑓 

𝜐1𝑓= 

𝜐2𝑓 
𝑏 𝑑 𝐾 𝑄𝑏 𝜎1𝑓𝑌 𝜎1𝑓𝑊 𝜎1𝑓𝐼𝐵 

(mm) (mm) (MPa) (GPa) (--) (mm) (mm) (--) (--) (MPa) (MPa) (MPa) 

0.5 1.21 99.05 67.78 0.028 17.96 26.61 -- 0.33 527.4 185.2 547.9 

1 0.8 396.89 67.78 0.028 17.96 26.20 2.2 -- 527.4 303.7 243.1 

1.5 0.8 895.89 67.78 0.028 17.96 26.20 2.2 -- 527.4 456.3 243.1 

 

6.3.3.5 Principal failure mode charts 

Since there are several parameters to be evaluated for studying the failure of 

sandwich panels subjected to bending, the main failure modes of the different lattice 

cores and proposed skins are plotted within this section.  

The calculations are carried out employing the formulations for each failure 

mode shown within this section, employing the data extracted from Table 6.1, Table 

6.2 and Table 6.3.  Recommended base values of 𝑄𝑏 = 0.33 for face wrinkling, and 𝐾 

= 2.2 for intercellular buckling will be considered. Later, these values will be better 

approximated for each case extracted from the FE simulations and then, from the ex-

perimental data in upcoming sections. The different combinations of core and faces 

studied are presented as follows, and the summary of results is shown in Table 6.5.  

As an additional analysis also necessary for the experimental tests, it is pro-

posed for avoiding an undesired premature shear rupture of the support part where the 

plywood core is located (Figure 6.1 and Figure 6.2), an average plywood shear 

strength value 𝜏𝑝𝑤 ≈ 5 MPa is also taken into account [206].  

Hence, recalling Eq. (4.62) and solving for the applied load 𝑃𝑍, the maximum 

applied load without shear failure of the plywood support (𝑃𝑍𝑝𝑤) is calculated according 

to Eq. (6.29). 

𝑃𝑍𝑝𝑤 = 
4

3
𝑏1𝐶𝜏𝑝𝑤 (6.29) 
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(a) Principal failure modes (b) Zoomed region 

  

Figure 6.10. Principal failure modes for case 1: lattice-core made from 0.5 mm rods 

during four-point bending 

The first case analysed corresponds to the core made from 0.5 mm rods (Figure 

6.10). The face fracture curve shows a linear development as a function of skin thick-

ness. In addition, the intracellular buckling failure curve presents grade 3 polynomial 

distribution, while face wrinkling is a potential curve to the 3/2 power. The transition 

line or failure mode change occurs for skin thicknesses of about ≈ 0.6 mm, indicating 

that for the current case of 𝜏𝑓 = 1.21 mm, the expected failure mode would be due to 

face wrinkling exhibiting an approximate theoretical value of 4.3 kN. 

(a) Principal failure modes (b) Zoomed region 

  

Figure 6.11. Principal failure modes for case 2: lattice-core made from 1 mm rods 

during four-point bending 
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 Figure 6.11 presents a change on the failure regions compared to Figure 6.10 

due to the higher out-of-plane stiffness of the core made from 1 mm rods (case 1: 𝐸𝑐 

= 99 MPa, while case 2, 𝐸𝑐= 396 MPa, see Table 6.1). Higher core stiffness directly 

affects the skin support, causing the face wrinkling behaviour to shift upwards. This 

effect changes the failure mode from intracellular buckling to face wrinkling, as of skin 

thicknesses of about 0.9 mm. Comparing the last two figures, the change in failure 

mode due to a stiffer core, for example, raises the maximum applied failure load from 

2.75 kN to 5.25 kN, for a 𝜏𝑓 ≈ 0.9 mm. For the current proposed case of 𝜏𝑓 = 0.8 mm, 

intracellular buckling failure mode is predicted at a maximum applied load of 3.6 kN.  

The case presented in Figure 6.12 shows the failure mode predictions for the 

lattice-core made from 1.5 mm rods. As stated in previous analysis, a bigger rod diam-

eter size influences the core out-of-plane rigidity, and regarding this case (𝐸𝑐= 895 

MPa) also influences the face wrinkling behaviour. The face wrinkling curve shifts up-

wards as well, and the failure mode changes by a face thickness of 𝜏𝑓 ≈ 1.17 mm, from 

intracellular buckling face fracture. However, the predictions also estimate that a prem-

ature shear failure of the plywood support would be attained previous to any face fail-

ure, for face thicknesses above 𝜏𝑓 ≈ 1.15 mm. The latter shall mean that a higher shear 

strength support core would be necessary for tests under this kind of core-skin combi-

nations. 

(a) Principal failure modes (b) Zoomed region 

  

Figure 6.12. Principal failure modes for case 3: lattice-core made from 1.5 mm rods 

during four-point bending 
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 Nevertheless, for the present case of 𝜏𝑓 = 0.8 mm, intracellular buckling failure 

mode is predicted, and a maximum applied load of 3.6 kN, the same value as for Figure 

6.11 case. Remarkably, the intracellular buckling is not affected by the rigidity of the 

core, under the plotted theoretical analyses (i.e., a 𝐾 constant factor of 2.2) and as-

suming that the in-plane core rigidity is almost zero. If one refers to the real case, small 

local variations of skin stiffness at the contact points (Figure 6.9) can affect the overall 

𝐾 value of intracellular buckling, which would lead to small variations in the expected 

face failure load for the lattice-core cases of 1 mm and 1.5 mm rods, but with the same 

skin thickness. As said, this 𝐾 value can be obtained indirectly from numerical models 

and experimental tests. As a summary of the stresses predicted on the compressed 

skins, the different curves according to Eq.(6.14), Eq. (6.19) and Eq. (6.26) are pre-

sented in Figure 6.13. The different lattice core employed are identified by the rod´s 

diameters as 0.5 mm, 1 mm, and 1.5 mm. The stress curves variation is different from 

the latter curves expressed for the applied stresses, as a function of the skin thickness 

and their mathematical relations. However, the meeting points between curves are ex-

pected to be the same, indicating a change in failure mode. Thus, the meeting points 

remains the same as 𝜏𝑓 ≈ 0.6 mm, 𝜏𝑓 ≈ 0.9 mm and 𝜏𝑓 ≈ 1.17 mm, as previously stated.  

 

Figure 6.13. Failure stresses predictions on the face under compression 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

200

400

600

800

1000

243.1

185.2

M
a
x
im

u
m

 f
a
c
e

 s
tr

e
s
s
 (

M
P

a
)

Face thickness tf (mm)

 Face fracture

 Intracellular buckling

 Face wrinkling D 0.5 mm

 Face wrinkling D 1 mm

 Face wrinkling D 1.5 mm

 Studied cases



6. Ultra-lightweight sandwich panels                                                                       213   

 

  The curve representing face fracture failure (i.e., a strength failure) is common 

to each core case and it is represented by a constant line regarding to the face thick-

nesses. When buckling behaviour is considered into the calculations, the variations of 

the stress curves as a function of the face thickness is no longer constant. Under in-

tracellular buckling behaviour (blue-dashed curve, in  

Figure 6.13), a common curve is drawn for each core case as a result of employing the 

same unit cell size and the same 𝐾 factor for each core case as a seed value. In the 

reality, this may present little variations that affect the calculations. Moreover, different 

stress curves for face wrinkling behaviour (full-line curves, in  

Figure 6.13) are found for the lattice-core made from 0.5 mm, 1 mm, and 1.5 mm rod 

diameters, given that the core´s out-of-plane rigidity increases with the rod diameter. 

Depending on the failure case, it is possible to observe variations on the maximum 

reachable stress for a determined face thickness. As an example, omitting the shear 

effects over the plywood supports and taking a 𝜏𝑓 = 1.2 mm under the proposed con-

ditions, this would represent a failure due to face wrinkling at 185 MPa, and 372 MPa 

for the 0.5 mm and 1 mm rod-based cores, respectively, but a failure by fracture for 

the 1.5 mm lattice-core reaching the face maximum strength of 527 MPa. This last 

example shows the influence of the core on the face failure behaviour predicted by the 

model. Remarkably, a failure due to face wrinkling may also be seen as a failure of the 

foundation. 

6.4 FE approach 

To complement the analytical predictions for the selected combinations of core-

faces, finite element simulations were carried out. The FE simulations were performed 

using commercial FEMAP™ 10.3 with NX™ Nastran [29]. Employing the equations 

from the theoretical models (Eq. (6.19) and Eq. (6.26)) and the stresses attained at the 

instability step from the non-linear simulations, the buckling coefficients for face wrin-

kling 𝑄𝑏, and for intercellular buckling 𝐾 were indirectly obtained.  

6.4.1 Model  

A 3D model of the proposed sandwich paned is presented on Figure 6.14, drawn 

following the base sketch of Figure 6.1. The unit cell has the basic morphology as 

shown in Figure 5.4 (Chapter 5), and it’s repeated in an array of 6 x 3 representing the 
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core´s structure. The mid-plane node of the unit cells where the rods meet, is simulated 

by a connection of bars (Figure 5.11, Chapter 5). The lattice structures are discretized 

using 1D-bar elements (CBAR) and 48 elements per rod. The lattices are connected 

to the skins at each rod´s end as a single node merged, assuming to be perfectly 

bonded. The top and bottom skins are simulated by 2D-shell elements (CQUAD4). The 

model takes the base material properties shown in Table 5.1 for the rods, and Table 

6.2 for the web.  

Linear in-plane loads of 1 kN/mm along the width of the upper and lower faces 

in compression and tension, respectively, are considered for the introduction of loads. 

For the transmission of the applied moment and to avoid local deformations such as 

relative displacements between plates and to maintain the cylindrical bending condi-

tion, the top and bottom skins are joined from a web of the same material and elements 

on each side of the panel. In addition, to avoid unwanted edge effects such as defor-

mations induced by local displacements at the nodes of the skins where the forces are 

applied, linear rigid elements are placed along segments a-d, b-c, e-h, and f-g (Figure 

6.14).  

(a) Model (b) Constraints references 

 

 

 

Segment Constraints 

a-b x-rotation 

d-c x-rotation 

e-h 
translation 
constrained 

f-g 
y-translation 
z-translation 

Figure 6.14. Model sketch employed for finite element simulations 

The boundary conditions were selected in a way to better represent the buckling 

behaviour within the sandwich panel. Normally, non-linear simulations stop when the 

model becomes unstable while analysing buckling behaviour and the equilibrium is not 

attained. Plates simulations under compression often exhibit edge effects that cause a 
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premature stop of the simulation, in many cases, before reaching the expected buck-

ling value. To avoid undesired edge effects, the rotation, for example, in x-direction 

can be locked on the a-b and d-c segments. The constraints are referenced in Figure 

6.14. No boundary conditions were introduced for the rest of the segments.  

6.4.2 Analysed cases   

The results of the FE simulations carried out are presented in this section. The 

models used as basic morphology are similar to Figure 6.14, but adapting them for 

each lattice-core rod´s diameter, and considering the face thickness for each core-face 

case proposed on Table 6.3. Examples on reference points for data collecting are given 

in Figure 6.15, in which plate-elements, rod-elements and/or nodes data are recorded.  

In this section, the deformation of the renderings of each case is not the actual 

but scaled and enlarged to better see the contour exhibited by the strained model. 

(a) Plate´s reference (b) Plate´s reference 

  

(c) Rod´s reference (d) Plate´s reference 

  

Figure 6.15. Example of benchmarks for data recording 
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6.4.2.1 Lattice-core made from 0.5 mm rods diameter and skins thickness of 1.2 mm  

Figure 6.16 shows the results obtained from the simulation at the last step, 

through as the step at which the simulation stops, for the lattice-core with the 0.5 mm 

rods, simulating a four-point bending test. At a first instance, it is not possible to infer 

which buckling case is represented, whether a case of buckling due to face wrinkling 

or to intracellular buckling. 

However, when zooming in to Figure 6.16.a, the enlarged image shows a buck-

led rod, and it could be inferred that actually the core is the part that fails, caused by 

the deformation of the skin which produced an out-of-plane load on the core, very sim-

ilar to the wrinkling case presented by Figure 6.7, where the elastic foundation cannot 

give any further support to the plate above. 

 

(a) Front view and zoomed area (b) Top view 

 

 

(c) Isometric view 

 

Figure 6.16. Different views obtained from the simulations for lattice-core 0.5 mm rods, 

and face thickness 1.2 mm. Contour: plate top X normal stress at last step 

Nevertheless, further information also gives support to the failure mode that is 

observed. Thus, the displacements of the nodes are graphically characterized by node 

tracking, besides the load on the bar-nodes and the stresses on the plate-elements, 

on Figure 6.17. 
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(a) Rod´s node displacement tracking (b) Plate´s node displacement tracking 

  

(c) Rod´s axial load (d) Plate X normal stress at instability 
step 

  

Figure 6.17. Simulation results extracted at benchmarks for lattice-core 0.5 mm rods, 

and face thickness 1.2 mm 

Regarding to Figure 6.17a. and Figure 6.17.b, the node´s displacement tracking 

is presented as of y-direction and of z-direction, respectively. In both cases, an insta-

bility behaviour starting from 13.68 kN and stopping at 15.23 kN of the applied load 

being the latter, the last step acquired. Both values are found pretty similar. The curves 

development shows a typical rod-buckling behaviour towards Euler´s buckling (refer to 

Chapters 2 and 5), while the plate´s nodes present a little variation from the linear 

behaviour. Furthermore, recalling Eq. (2.63) and employing a Euler´s factor of k ≈ 1 an 

axial critical load for the rods of 10.79 N is attained, which is found closer to the value 

witnessed on Figure 6.17.c. Although it is true that the rods are embedded in the skins 

at both ends, nevertheless the skins are free to move and rotate, causing the same 
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behaviour to be transferred to the rods at the point of linkage. Leaving aside the local 

stiffness of the connecting link, a k ≈ 1 can still be assumed as a good approximation 

for the control calculations. However, the FE k-factor is, rigorously and indirectly cal-

culated as k ≈ 0.95, employing the FE failure axial load (from the last step, a rod axial 

load of 12 N is used for the calculation) and Eq. (2.63). Thus, taking into account the 

observations mentioned above, the panel failure is predicted as a face wrinkling failure 

mode, caused by the collapse of the foundation.  

The stresses obtained from the top-plate elements at the instability step (where 

the buckling begins) are on average 230 MPa in compression (Figure 6.17.d), with 

small variations around this value, due to changes in the local stiffness of the skins 

caused by the influence of the rods, and boundary conditions. To have a broader view 

of the skin stresses obtained from the simulations, Figure 6.18 shows the x-normal 

stresses of the upper skin at the last step. The stress distribution is then influenced by 

the presence of the rods causing the stresses to decrease slightly from the average, 

and to increase in the intracellular zones. The stresses are found to be higher in the 

middle region of the plate, with points of stress concentration in the presence of the 

rods. 

 

Figure 6.18. Top X normal stress of the face under compressive loads at last step 

6.4.2.2 Lattice core made from 1 mm rods diameter and skins thickness of 0.8 mm 

Figure 6.19 presents the results obtained for the case of cores made from 1mm 

diameter rods and 0.8 mm thick skins. The difference with the previous case is notori-

ous, and directly from the images it is possible to identify the change in the failure 

mode, for thinner skin thicknesses. The case is evidenced as intracellular buckling, 

where the morphology of the skin is manifested as a wave inward and outwards of the 

unit cell, presenting the maximum stresses distributed in the middle of the panel. As 
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seen on  Figure 6.20, one face´s wave is stressed in compression and the other in 

tension.  

(a) Front view and zoomed area (b) Top view 

 

 

(c) Isometric view 

 

Figure 6.19.  Different views obtained from the simulations for lattice-core 1 mm rods, 

and face thickness 0.8 mm. Contour: plate top X normal stress at last step 

(a) Instability step (b) Last step 

  

Figure 6.20. Top X normal stresses on the top face at different time steps 

Additionally, the stress distribution on the third and fourth row of plate elements, 

previously referenced in Figure 6.15, is shown in Figure 6.21. The influence of the local 

stiffness provided by the rods in the connection area with the skin, makes the stress 

distribution to present a slight variation for each average stress, and on each side of 

the edges due to the imposed boundary conditions. Nonlinear simulations are set not 
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restricted to a maximum stress value, therefore, the stresses viewed in the last step 

are extremely high. In the real case, the skin, or the bond between skin-core, could be 

broken long before reaching these maxima. The stress representation at the last step 

should be taken just as an example of the stress distribution across the width of the 

upper skin. The compressive instability stress is of an average value of 175 MPa, con-

sidering the plate middle elements (third and fourth row). 

 

Figure 6.21. Stress distribution at reference points on the top skin at the beginnnig of 

instabilization and at the last step 

From the node´s displacements charts, it is difficult to infer which kind of buck-

ling mode is attained, although the point of instability is found around 6.3 kN and con-

tinues until the simulation stops at 7.6 kN of applied load (Figure 6.22.a and Figure 

6.22.b). However, referring to the scale of both tracking, the displacements are much 

larger at the plate-nodes than at the rod-nodes, i.e., the plate´s deformation is larger 

and, in principle, it would drag the rods pulling or pushing them with it, explaining the 

small displacements of the rod-nodes that are detected (Figure 6.22.d). In terms of 

axial load on the bars (Figure 6.22.c), a force of 4 N in compression arises as a con-

sequence of the load applied at the starting point of instability, close to 6.3 kN of applied 

load and then a bifurcation occurs, indicating a change in the direction of the axial force 

(compression and tension) comparing both nodes. This change in the axial loading is 

attributed to the effect of the plate buckling over the rods. The theoretical failure load 

employing Euler´s buckling formula (Eq. (2.63) and k ≈ 1 is around 172 N, indicating 

that the failure will not occur in the form of rod´s buckling (i.e., a force of 4 N is attained 

while the critical load is then 172 N). Under all these statements, it can be inferred that 

the failure will result from buckling of the skin as intracellular buckling mode. 
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(a) Rod´s node displacement tracking (b) Plate´s node displacement tracking 

  

(c) Rod´s axial load (d) Rod and plate´s node displacement 
tracking 

  

Figure 6.22.  Simulation results extracted at benchmarks for lattice-core 1 mm rods, 

and face thickness 0.8 mm 

6.4.2.3 Lattice core made from 1.5 mm rods diameter and skins thickness of 0.8 mm 

Similar to the previous study, Figure 6.23 represents a case of intracellular buck-

ling with the naked eye. The face ripples are noticeable between cells, having the high-

est top X-plate stress in the middle region of the panel.  

The effect of the rods on the skin is also evident, indicating a change in the 

distribution of stresses due to a change in the local stiffness of the connection point, 

as in the previous cases. Taking into account the middle array of cells along the panel 

(y = 0 region regarding to Figure 6.14), a noticeable effect is evidenced in which the 

stresses are higher than in the rest of the cells (Figure 6.24). 

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04

0

1

2

3

4

5

6

7

8

9

A
p
p
lie

d
 l
o
a
d
 (

k
N

)

Displacement (mm)

 Node 1 tracking

 Node 2 tracking

0.500.00-0.50-1.00-1.50-2.00

0

2

4

6

8

A
p

p
lie

d
 l
o

a
d

 (
k
N

)

Displacement (mm)

 Node 1 tracking

 Node 2 tracking

10.000.00-10.00-20.00-30.00

0

1

2

3

4

5

6

7

8

A
p

p
lie

d
 l
o

a
d

 (
k
N

)

Axial load (N)

 Node 1 tracking

 Node 2 tracking

0.500.00-0.50-1.00-1.50-2.00

0

2

4

6

8

A
p

p
lie

d
 l
o

a
d

 (
k
N

)

Displacement (mm)

 Node 1 tracking (plate)

 Node 2 tracking (plate)

 Node 1 tracking (rod)

 Node 2 tracking (rod)



  222                                                      6. Ultra-lightweight sandwich panels 

 

(a) Front view and zoomed area (b) Top view 

 

 

(c) Isometric view 

 

Figure 6.23.  Different views obtained from the simulations for lattice-core 1.5 mm 

rods, and face thickness 0.8 mm. Contour: plate top X normal stress at last step 

 

(a) Instability step (b) Last step 

  
  

Figure 6.24. Top X normal stresses on the top face at different time steps 

Taking as reference Figure 6.14 and Figure 6.15, the unit cells that belongs to 

the third and fourth rows and they are found on the region in which y = 0, present four 

rods for each core-skin linkage point (unit cell vertices), and not one or two as nearby 

the plate borders. On a first instance, it can be inferred that when using 1.5 mm rods, 

an effect of greater local stiffening is produced than in the case of 1 mm rods. This 
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effect may cause that the stresses are greater than in the case of the 1 mm rod lattice-

core. 

(a) Rod´s node displacement tracking (b) Plate´s node displacement tracking 

  

(c) Rod´s axial load (d) Rod and plate´s node displacement 
tracking 

  

Figure 6.25. Simulation results extracted at benchmarks for lattice-core 1.5 mm rods, 

and face thickness 0.8 mm 

Unlike the previous case (Figure 6.22), the point where the instability begins is 

a little higher in terms of applied load, of around 7.12 kN and the simulation continues 

up to an average applied load of 8 kN and then it stops (Figure 6.25.a and Figure 

6.25.b). Bearing in mind that only the size of the rods has been changed but not the 

skin thickness, the consequence of a greater instability load is due to the local stiffening 

effect of the skin, which is caused by the rods at the connection points. A greater rigidity 

of the rods shall mean that when the skin reaches the point of instability and the buck-

ling process begins, the rods are not pulled or pushed as easily by the skin, evidenced 
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by the lesser displacement above the branched point when comparing the skin-nodes 

and the rod-nodes (Figure 6.25.c). Then, when comparing Figure 6.22.d and Figure 

6.25.d, the lattice-core made from 1 mm rods allows a greater displacement of the 

skins compared to the 1.5 mm core, which concentrate the stresses within the middle 

longitudinal cells.  

As in previous studies, employing Eq. (2.63) and k ≈ 1 the theoretical failure rod 

buckling load results in 874 N, meaning that foundation would not collapse due to an 

out-of-plane load occasioned by the skin´s deformation as the axial compressive load 

is found of about 3 N at the instability point (Figure 6.25.c). The bifurcation seen as a 

change in the axial load orientation, is due to the drag effect caused by the face while 

buckling. 

Figure 6.26 exhibits the stresses reached at the instability point at 187 MPa, and 

at the last step. As previously stated, this figure simulates the stress distribution at the 

last step, and its maximum value may not replicate what it is happening in reality, since 

the skin have already begun its buckling process, and may fail at a lower stress. The 

effect of the rods on the stresses is that of causing them to be focused in the central 

area of the panel, given the imposed conditions. 

 

Figure 6.26. Simulation results extracted at benchmarks for lattice-core 1.5 mm rods, 

and face thickness 0.8 mm 

6.4.2.4 Numerical results 

The results obtained from the simulations are resumed Table 6.6. A nominal 

face thickness of 1.21 mm and 0.8 mm are taken into account. The critical stress as 

𝜎1𝑓𝑐𝑟𝑖𝑡 is obtained directly as an average from the stress data recorded. The FE 
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model´s width 𝑏1 is taken as of three unit cells. The applied load 𝑃𝑧 is calculated from 

Eq. (6.21) and Eq. (6.27), employing 𝜎1𝑓𝑐𝑟𝑖𝑡 attained from the simulations. The failure 

modes predicted are face wrinkling, for the small rod´s diameter and larger face thick-

ness, and intracellular buckling, for the bigger rod´s diameters and the 0.8 mm face 

thickness. The discrepancies among the analytical and numerical results are given 

mostly by the different buckling coefficients employed for the calculations as seed val-

ues for the analytical results. The buckling coefficients will be then determined by the 

experimental tests, giving feedback to the models. 

 Comparing the cores made from 1 mm and 1.5 mm rods, the analytical results 

for the critical stresses predicted exhibit no differences between them, because the 

intracellular buckling mode is not affected by the rigidity of the core in the calculation 

as previously said (section 6.4.2.3). However, the FE simulations do show little differ-

ences in the critical stress estimation for intracellular buckling, inferring that the rods 

may affect locally the rigidity of the skin as previously seen in the stress distribution 

contour plots (Figure 6.20 and Figure 6.24). 

Table 6.6. Summary of results taken from FE simulations  

Ø 𝑡𝑓  𝐾* 𝑄𝑏* 𝐾** 𝑄𝑏** 𝑃𝑧* 𝑃𝑧** 𝜎1𝑓𝑐𝑟𝑖𝑡* 𝜎1𝑓𝑐𝑟𝑖𝑡** 
Failure 
mode  
predicted 

(mm) (mm) (--) (--) (--) (--) (kN) (kN) (MPa) (MPa) (--) 

0.5 1.21 -- 0.40 -- 0.33 5.3 4.3 230 185.2 FW 

1 0.8 1.58 -- 2.2 -- 2.67 3.6 175 243.1 IB 

1.5 0.8 1.66 -- 2.2 -- 2.82 3.6 187 243.1 IB 

Notes: (*) Non-linear static simulation results/values, (**) Analytical results/values. FW: 

face wrinkling. IB: intracellular buckling 

6.5 Experimental tests 

For the validation of the analytical studies of sandwich panels with lattice cores 

based on rods and skins from CFRP under four-point bending, experimental tests are 

carried out. The execution of the tests and the test-rig employed is similar to those 

established in ASTM C393 [207].  
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6.5.1 Bending test set up 

The bending specimens employed for testing are given in Figure 6.2, which 

main nominal dimensions are of 490 x 65 x 27 mm for a 𝑡𝑓 ≈ 0.8 mm, and 490 x 65 x 

27.8 mm for a 𝑡𝑓 ≈ 1.21 mm. The sandwich out-of-plane straining is measured by a 

displacement transducer HBM W5TK. For measuring the in-plane straining of the 

faces, three strain gauges’ type HBM 120 Ohm in a configuration of a quarter bridge 

with 2-wire circuit is employed. Two of them are glued to the face under compression, 

or in this configuration, the bottom face, and one over the face under tension, i.e., the 

top face (Figure 6.27). The strain gauges will also serve to determine experimentally 

the elastic modulus of the skins from the measured straining. 

(a) Face under compression (b) Face under tension 

  

Figure 6.27. Positions of the strain gauges over the sandwich sample 

The load is applied at the top of the sample at a constant rate of 1.5 mm/min 

throughout punches of diameter 50 mm, driven by a Zwick / Roell Z150 screw-driven 

universal testing machine (Figure 5.28). Two samples of each kind are tested in a con-

trolled temperature room. As previously stated, the specimens have been obtained 

from the UniBwM at laboratory-scale. Therefore, for statistical interest it is highly en-

couraged the manufacturing and testing of more specimens as future work. However, 

good repeatability is gained, and thus, tests are described within this section. The sam-

ple dimensions and support/punches positioning are established in Table 6.3. 
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Figure 6.28. Set up used for bending tests 

6.5.2 Bending tests results 

The different tests for the proposed skin-core combinations are presented 

graphically in this section, reviewing the charts and tests in which the mechanical re-

sponse turned out to be of better performance and of better representativeness. A 

description of the observed events on selected points is also provided. 

6.5.2.1 Lattice core made from 0.5 mm rod diameter and skins thickness of 1.21 mm 

The mechanical response to bending of the panel made from a lattice-core 

made of 0.5 mm rods and 1.21 mm nominal thickness skins, is represented in Figure 

6.29. A linear zone with almost no variations is observed after the specimen seated 

and began to take the load up to point II, close to 4.8 kN. In the enlargement picture, 

reference points II and III are observed separated by a difference of approximately 

0.05 mm in deflection. This would indicate that the transition between point II, at the 

onset of instability and point III, at the instant at which the failure occurs, is almost 

immediate.  
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Figure 6.29. Measured load-deflection response under bending of lattice-based core 

with 0.5 mm rod, and nominal face thickness of 1.21 mm 

 

Figure 6.30.  Photographs associated to selected points: bending behaviour of lattice-

based core with 0.5 mm rod, and nominal face thickness of 1.21 mm 
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In Figure 6.30 point II, a very slight change of orientation of the rods is observed, 

with a slight rotation in the meeting middle node, which is perceived as a local buckling 

of the rods. This bucking causes a slight deviation of the lower skin under compression 

and favours the beginning of the face buckling. A half wavelength reaching two of the 

middle unit cells is c seen. Then, immediately with the increase on load (up to 4.82 

kN), the failure of the skin is reached, caused by the sudden collapse of the foundation.  

On the other hand, Figure 6.31 shows the data collected by strain gauges in 

compression and tension. Both gauges 1 and 2, capture almost the same strain with a 

slight difference in the curve slope near the start of buckling above 200 MPa, and 

reaching buckling failure above 210 MPa. As expected, the maximum strength is the 

same in all three sensors. The response in compression shows a greater deformation 

than in tension due to the local elastic deformation of the core and added to the dis-

placement of the skin evidenced in the measurement zone. According to gauge 3, the 

stress curve has a lineal behaviour until failure of the panel. 

(a) Strain gauges 1 and 2 (compression) (b) Strain gauge 3 (tension) 

  

Figure 6.31. Face stress vs. strain response for lattice-based core with 0.5 mm rod, 

and nominal face thickness of 1.21 mm 

6.5.2.2 Lattice core made from 1 mm rods diameter and skins thickness of 0.8 mm 

Figure 6.32 shows the case of a panel made from a core with 1 mm rods and a 

face nominal thickness of 0.8 mm. After the take-up of slack and seating of the sample, 

a linear region continuous until point II is observed. 
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Figure 6.32. Measured load-deflection response under bending of lattice-based core 

with 1 mm rod, and nominal face thickness of 0.8 mm 

 

Figure 6.33. Photographs associated to selected points: bending behaviour of lattice-

based core with 1 mm rod, and nominal face thickness of 0.8 mm 
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At point II, it is seen the beginning of the plate buckling represented in photo-

graphs in Figure 6.33. From this point, a gradual change in the load-displacement slope 

is evidenced up to point III where the load becomes unstable, and then the collapse of 

the skin under compression occurs (Figure 6.32 and Figure 6.33). The observed buck-

ling mode is by intracellular buckling, in which half wavelength of the size of the unit 

cell is evidenced. Unlike the previous case, the core does not collapse, and the failure 

is only due to the skin.  

Observing Figure 6.34, strain gauges 1 and 2 show similar response of the 

stress-strain curve until the instability is reached. The response above 200 MPa or 

what it seems like the buckling starting point, turns to be the opposite, indicating that 

one cell array is being tensioned while the other is being compressed until topping out 

225 MPa. This evidences a typical intracellular buckling behaviour (see Section 

6.3.3.3). Moreover, gauge 3 presents a linear behaviour of the face under tensile stress 

up to the breakage instance of the panel. 

(a) Strain gauges 1 and 2 (compression) (b) Strain gauge 3 (tension) 

  

Figure 6.34. Face stress vs. strain response for lattice-based core with 1 mm rod, and 

nominal face thickness of 0.8 mm 

6.5.2.3 Lattice core made from 1 mm rods diameter and skins thickness of 0.8 mm 

The bending response of panel made from 1.5 mm rods and nominal face thick-

ness 0.8 mm is set by Figure 6.35. At the beginning of the test, the specimen seated 

as a function of the load. The load-deflection response presented a linear region up to 

point II.  
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Figure 6.35. Measured load-deflection response under bending of lattice-based core 

with 1.5 mm rod, and nominal face thickness of 0.8 mm 

 

Figure 6.36. Photographs associated to selected points: bending behaviour of lattice-

based core with 1.5 mm rod, and nominal face thickness of 0.8 mm 
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At point II, local brittle breakages of the material are seen in the tests (i.e., in 

form of small local drop in slope), which could originate the beginning of the plate buck-

ling represented in photographs Figure 6.36. After stepping over the 3.8 kN load, a 

light change in the slop is seen until point III, meaning that the buckling has already 

started and continues to be in a stable regime until failure. At point three, the bottom 

face deformation exhibits half its wavelength within the unit cells, denoting an intracel-

lular buckling behaviour (Figure 6.36). 

Furthermore, strain gauges 1 and 2 exhibit a similar stress-strain behaviour, 

despite following different curves´ slopes, attributed to the relative positioning of the 

sensors on the skin. The non-linearity region starts from about 220 MPa, and the stress 

slope becomes flatter upon 250 MPa until the stress reaches 260 MPa and the face 

fails. According to Figure 6.36, point III the failure is attributed to intracellular buckling, 

although the strain gauges do not exhibit the expected change of orientation in stresses 

(e.g., towards positive and negative values, respectively) as occurred in previous core 

case. In the present case, the cells where the sensors are glued present a buckling 

deformation towards the same cell side, i.e., in compression as towards the inside of 

the core, and these may differ from what occurs in other cells, such as those shown in 

the front view of Figure 6.36, point III. This implies that the face deformation after the 

instability stress is not symmetrical according to the midline of the skin. 

(a) Strain gauges 1 and 2 (compression) (b) Strain gauge 3 (tension) 

  

Figure 6.37. Face stress vs. strain response for lattice-based core with 0.5 mm rod, 

and nominal face thickness of 1.2 mm 
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6.5.3 Discussion  

In this section the obtained mechanical response results are evaluated, compar-

ing the experimental data with the analytical and numerical approaches combined. As 

previously stated, regarding Table 6.6 the values of 𝑄𝑏 and 𝐾 are obtained indirectly 

from the numerical results for the different cores-faces combinations proposed. Apply-

ing these factors directly into the analytical equations, charts of the applied load 𝑃𝑧 and 

the maximum face stresses 𝜎1𝑓𝑐𝑟𝑖𝑡 vs. the face thickness are obtained in Figure 6.38.  

The failure modes are in accordance with the predictions, being face wrinkling and 

intracellular buckling the dominant modes. Case 1, Figure 6.38, denotes a case of face 

wrinkling behaviour. Employing Eq. (6.19) and the experimentally obtained values, a 

coefficient 𝑄𝑏=0.38 is attained. The approximate value regarding the simulations is 𝑄𝑏= 

0.4, which is in excellent correlation with the experiments. Furthermore, Case 2 and 

Case 3 in Figure 6.38 denote cases of intracellular buckling. The FE simulations predict 

𝐾 values of 1.58 and 1.66, respectively, which lightly underestimates the values seen 

experimentally. If the criterion of maximum stress reached is employed to indirectly 

obtain coefficient 𝐾 from the experimental values for skin-core cases and employing 

Eq. (6.26), 𝐾 values of 2 and 2.1 are attained. The corrected curve obtained analytically 

(magenta-coloured curve) fits very well the experimental points acquired. Although 

there is a correlation between the core rod´s diameter size and the local stiffness con-

tributed to the skin, in other words, the larger the diameter, the larger the local rigidity 

effect on the skin (see Figure 6.18, Figure 6.20 and Figure 6.24), the values obtained 

by the FE simulations for the intracellular buckling coefficient 𝐾 are pretty similar, and 

in the range 1.58 to 1.66 for core rod´s diameters 1 mm and 1.5 mm, respectively. By 

extrapolation, the hypothetically 𝐾 value for core rod´s diameter 0.5 mm and face thick-

ness 1.2 mm (Case 1 in Figure 6.38) would be less than 1.58. However, for Case 1, 

the failure mode is found to be as face wrinkling, whose buckling coefficient is obtained 

as 𝑄𝑏 throughout Eq. (6.19), and its 𝐾 value turns out to be only theoretical, since it is 

not possible to obtain nor confirm the intracellular buckling behaviour for this skin-core 

combination. Nevertheless, a seed value of 𝐾 = 1.58 has been established for plotting 

the main failure modes of case 1 in Figure 6.38. The same analogy results for cases 2 

and 3 in Figure 6.38, but for face wrinkling behaviour, in which the buckling factor 𝑄𝑏 

= 0.4 is set as seed theoretical value. 
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(a) Case 1: lattice-core with 0.5 mm rods and nominal face thickness 1.21 mm 

  

(b) Case 2: lattice-core with 1 mm rods and nominal face thickness 0.8 mm 

  

(c) Case 3: lattice-core with 1.5 mm rods and nominal face thickness 0.8 mm 

  

Figure 6.38. Charts obtained by analytical-numerical approaches with experimental 

cases. Left column: According to applied load. Right column: According to face stress. 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
  IB (K = 1.58)

  FW (Qb = 0.4)

  Dominant mode

  Experimental case

A
p

p
lie

d
 l
o

a
d

 P
z
 (

k
N

)

Face thickness tf (mm)

Intracellular buckling

Face wrinkling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

100

200

300

400

M
a
x
im

u
m

 f
a
c
e
 s

tr
e
s
s
 (

M
P

a
)

Face thickness tf (mm)

 IB (K = 1.58)

 FW (Qb = 0.4)

 Dominant mode

 Experimental case

Face wrinkling

Intracellular buckling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5   IB (K = 1.58)

  IB (K = 2)

  FW (Qb = 0.4)

  Dominant mode

  Experimental case

A
p
p
lie

d
 l
o
a
d
 P

z
 (

k
N

)

Face thickness tf (mm)

Intracellular buckling

Face 

wrinkling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0

200

400

600

800

M
a
x
im

u
m

 f
a
c
e
 s

tr
e
s
s
 (

M
P

a
)

Face thickness tf (mm)

 IB (K = 1.58)

 IB (K = 2)

 FW (Qb = 0.4)

 Dominant mode

 Experimental case

Face 

wrinkling

Intracellular buckling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0

5

10

15

20

25

30

35
  IB (K = 1.66)

  IB (K = 2.1)

  FW (Qb = 0.4)

  Dominant mode

  Experimental case

A
p
p
lie

d
 l
o
a
d
 P

z
 (

k
N

)

Face thickness tf (mm)

Intracellular buckling
Face 

wrinkling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0

200

400

600

800

1000

M
a
x
im

u
m

 f
a
c
e
 s

tr
e
s
s
 (

M
P

a
)

Face thickness tf (mm)

 IB (K = 1.66)

 IB (K = 2.1)

 FW (Qb = 0.4)

 Dominant mode

 Experimental case

Face 

wrinkling

Intracellular 

buckling



  236                                                      6. Ultra-lightweight sandwich panels 

 

Table 6.7 resumes the results previously shown in the charts. Manufacturing 

imperfections may influence the maximal stress failure exhibited, evidenced by the 

discrepancies in the standard deviations. The main differences among the failure 

stress values obtained are mainly as a result of the buckling factors approximations. 

The calculations are found to be very sensible to them. Nevertheless, good corre-

spondence in the failure mode predictions is observed. In addition, employing accurate 

buckling factors attained from the experimental tests, the corrected curves approxima-

tions are in accordance with the experimental tests as seen in Figure 6.38.  

Table 6.7. Resume of analytical-numerical and experimental results from bending tests 

 

Ø 

(mm) 

Analytical-numerical  Experimental 

𝐾 

(--) 

𝑄𝑏 

(--) 

𝑃𝑧 

(kN) 

𝜎1𝑓𝑐𝑟𝑖𝑡 

(MPa) 

 𝐾 

(--) 

𝑄𝑏 

(--) 

𝑃𝑧 

(kN) 

𝜎1𝑓𝑐𝑟𝑖𝑡* 

(MPa) 

Obs. 
mode 

0.5  -- 0.4 5.3 230  -- 0.38 4.82 ± 0.07 213.5 ± 3.5 FW 

1 1.58 -- 2.67 175  2 -- 3.83 ± 0.17 237.5 ± 12.5 IB 

1.5 1.66 -- 2.82 187  2.1 -- 3.61 ± 0.61 239.8 ± 20.2 IB 

Notes: (*) maximum stress reached. FW: face wrinkling. IB: intracellular buckling 

Referring to the experimental results, further information can be obtained from 

the experimental charts of stress and strain in terms of the elastic modulus of the faces 

(Figure 6.31, Figure 6.34 and Figure 6.37). If very thin faces are considered 𝑡𝑓 << C, 

then the measurement of the deformation of the faces is assumed as the same 

throughout their thickness. However,  since the measurement is made on the panel, 

that is, in the external layer of the beam, an effective modulus of elasticity can be ob-

tained while employing the standard ASTM D7249 [208] applying Eq. (6.30), and the 

results are exhibited in Table 6.8. 

𝐸1𝑓_𝑒𝑓𝑓 =
(𝐶 + 2𝑡𝑓)

(𝐶 + 𝑡𝑓)

∆𝜎1𝑓

∆𝜖1𝑓
=
ℎ

𝑑

∆𝜎1𝑓

∆𝜖1𝑓
 (6.30) 

Assuming that the mechanical response of the faces to compression and tension 

in the elastic range is very similar, combing the results from strain gauge 1, 2 and 3 

obtained in Table 6.8, an average effective elastic modulus of 66446.8 MPa is attained. 

This approximation is in very good correspondence to 𝐸1𝑓 = 67782 analytically ob-

tained and showed in Table 6.2.  
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Table 6.8. Face elastic moduli obtained from sandwich bending tests via strain 

gauges´ deformation 

Face elastic 
modulus 

Strain gauge 1 Strain gauge 2 Strain gauge 3 

(MPa) (MPa) (MPa) 

𝐸1𝑓
𝑐𝑎𝑠𝑒 1 61236 63335 75592 

𝐸1𝑓
𝑐𝑎𝑠𝑒 2 60393 56926 73370 

𝐸1𝑓
𝑐𝑎𝑠𝑒 3 60207 55364 71052 

𝐸1𝑓
𝑎𝑣𝑔

 60612 58542 73338 

𝐸1𝑓_𝑒𝑓𝑓
𝑐𝑎𝑠𝑒 1  63998.5 66192.2 79002.2 

𝐸1𝑓_𝑒𝑓𝑓
𝑐𝑎𝑠𝑒 2  62237 58664.2 75610.3 

𝐸1𝑓_𝑒𝑓𝑓
𝑐𝑎𝑠𝑒 3  62045.4 57054.5 73221.5 

𝐸1𝑓_𝑒𝑓𝑓
𝑎𝑣𝑔

 62760.3 60636.9 75944.6 

Note: Superscript “case 1“: lattice-core rods = 0.5 mm, 𝑡𝑓 = 1.2; “case 2“: lattice-core 

rods = 1 mm, 𝑡𝑓 = 0.8 mm; “case 3“: lattice-core rods = 1.5 mm, 𝑡𝑓 = 0.8 mm.  Subscript 

“eff”: effective 

The maximum displacements obtained at the instant of failure regarding to Figure 

6.29, Figure 6.32 and Figure 6.35, are presented in Table 6.9. Employing Eq. (6.11) 

and the maximum failure load obtained experimentally, it is possible to analytically ap-

proximate the maximum displacement, using the simplified bending stiffness as Eq. 

(6.8), that is, assuming thin faces as 𝑡𝑓 << 𝐶, and a weak core as 𝐸3𝑐 << 𝐸1𝑓. The 

analytical method is in good correspondence with the maximum displacement values 

attained. 

Table 6.9. Maximum displacements attained by maximum load 

Displacements 
Theoretically Experimentally Difference 

(mm) (mm) (%) 

𝑤𝑐𝑎𝑠𝑒 1 0.76 ± 0.01 0.63 ± 0.05 17.83 

𝑤𝑐𝑎𝑠𝑒 2 0.9 ± 0.04 1.03 ± 0.08 12.62 

𝑤𝑐𝑎𝑠𝑒 3 0.89 ± 0.12 0.93 ± 0.1 3.806 

6.6 Extrapolation to ultra-lightweight 3D-honeycomb cores  

In this section, taking as reference the models proposed in section 6.3 and sec-

tion 6.4, the analysis of sandwich panels under four-point-bending is extended towards 

the ultra-lightweight 3D-honeycomb cores presented in Chapter 4, exemplifying a case 
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of 0.8 mm skin thickness. Through FE models, the instability loads for the sandwich 

panels are attained and employed as feedback for the analytical approach. The domi-

nant failure mode of these panels is intracellular buckling.  

6.6.1 Sample design 

The cores selected for studies are full-walled base material as the reference core, 

and the machined cores such as design 1 and 2. The specimen comprises square-

honeycomb cores of 25.4 mm of thickness, in an array of 5 x 10-unit cells. The faces 

are identical and of a nominal thickness of 0.8 mm. The overall panels dimensions are 

of [200 x 100 x 27] mm (Table 6.11). The basic analytical and FE-models´ character-

istics for core and faces are set out in Table 4.2, Table 4.3, Table 6.2, and Table 6.10. 

Table 6.10. Employed mechanical properties of the square-honeycomb cores 

Core type 
𝜌𝑐
∗

  

(kgm-3) 

𝐸3𝑐   

(GPa) 

𝜎3𝑐   

(MPa) 

𝐺31𝑐 = 𝐺32𝑐   

(MPa) 

𝜏31𝑐 = 𝜏32𝑐 

(MPa) 

Reference 37.8 1.57 2.194 51.22 1.37 

Design 1 47.4 1.59 2.943 60.71 0.84 

Design 2 47.77 1.93 2.805 27.91 0.74 

Table 6.11. Resume of dimensions employed for FE models 

Core type 
L5 

(mm) 

b1 

(mm) 

C  

(mm) 

tf  

(mm) 

L = W 

(mm) 

Reference 200 100 25.4 0.80 50 

Design 1 200 100 25.4 0.80 20 

Design 2 200 100 25.4 0.80 20 

6.6.2 FE model 

The load introduction and the modelling of the basic structure is found similar to 

that in Section 6.4. The proposed sandwich is modelled according to the sketch in 

Figure 6.14. The cores are characterized by a unit cell whose topology and features 

are presented in Figure 4.3 and Table 4.3. On the one side, the cores are based on 

2D shell elements (CQUAD4) with a mapped mesh in which the base material of a 

nominal thickness of 0.65 mm has the characteristics shown in Table 4.2. On the other 

side, the upper and lower faces are also simulated using 2D shell elements (CQUAD4) 
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but with a 0.8 mm thick base material and features taken from theoretical values shown 

in Table 6.2. Linear loads of 1 N/mm are set along the width over linear rigid elements, 

placed along segments a-d, b-c, e-h, and f-g.  

(a) Constraints references 
 

Seg-
ment 

Constraints 

a-b x-rotation 

d-c x-rotation 

e-h 
translation 
constrained 

f-g 
y-translation 
z-translation 

(b) Model 

 

Figure 6.39. Model sketch employed for FE simulations for 3D-honeycomb cores 

evalutation 

The panel is ideally assembled, in which the skin-to-core contacts (i.e., contact 

nodes) are merged. The boundary conditions are selected as follows: the rotation is 

locked on the a-b and d-c segments; segment b-c is set as pinned, while e-h is set as 

pinned but with no translation; the constraint for segment f-g is applied as simply sup-

ported in a way that only its nodes can translate in x-direction. For segments a-d, e-f, 

and h-g no constraints are set. 
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6.6.3 Analysed cases 

Non-linear simulations using commercial FEMAP™ 10.3 with NX™ Nastran® 

[29] are carried out to complement the analytical studies, and their results are pre-

sented within this section. The governing failure mode is identified as intracellular buck-

ling. The simulations are carried out using as base model the part viewed in Figure 

6.39. The results obtained comprise the applied in-plane load on the faces as a func-

tion of the node tracking displacements on representative places of the model.  

6.6.3.1 Reference core with 0.8 mm faces 

The reference case under four-point bending is seen in Figure 6.40. Node dis-

placements present a marked bifurcation close to 3 kN. The onset of instability is con-

sidered to an average of 35 MPa (Figure 6.40.b). The magnitude of displacements is 

greater at the face reference nodes than at the core´s nodes. Thus, the core nodes are 

perceived as "dragged" as a consequence of the large skin deformation, denoting an 

intracellular buckling behaviour. The visual evidence on intracellular buckling is also 

found in Figure 6.41. 

Here, the deformation is not the actual but scaled and enlarged to better see the 

contour. The compressed skin presents half-waves of the cell size, in which the part of 

the face within each unit cell is compressed or pulled. Part of the applied remote stress 

is in turn taken up by the core and acts as a local reinforcement of the skin. This effect 

is observed at the inflection points on the stress curve (where the core web is found) 

in Figure 6.40.b. As previously mentioned, the maximum stress magnitude is just ide-

ally treated and in fact, the real panel may fail before reaching the stresses shown at 

the last step.  

The result of the simulation also shows in Figure 6.40.a, that after the inflection 

point where the instability begins, the face structure does not suddenly fail, but is able 

to bear more load following “stably” an asymptote until the simulation stops. This may 

indicate that the real sandwich structure would be able to bear even more load after 

the critical buckling point (as explained in Chapter 2), failing according to another cause 

as, for example, debonding of face and core. Recalling Figure 6.22 and Figure 6.25 

and comparing them to Figure 6.40.a., the sandwich panels with lattice cores are ca-

pable to bear less load after the buckling point, attributable to the smaller contact area 

between face and cores as they are only punctual (Figure 6.9). The larger contact area 
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within the unit cell of the square-honeycombs stabilizes the faces, enhancing the bear-

able payload after the critical point.  

(a) Node tracking displacements Node references for data acquisition 

  

(b) Top face normal stresses Element references for data acquisition 

 

 

 

Figure 6.40. Results extracted from FE simulations for reference core case. Note: T2: 

y-direction; T3: z-direction, coordinate system as in Figure 6.39. 

 

Figure 6.41. Displacements in global z-direction for reference core at last step 
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6.6.3.2 Design 1 core with 0.8 mm faces 

The case of the design 1 machined cores is shown in Figure 6.42.  

(a) Node tracking displacements Node references for data acquisition 

  

(b) Top face normal stresses Plate references for data acquisition 

 

 

Figure 6.42. Results extracted from FE simulations for design 1 core case. Note: T2: 

y-direction; T3: z-direction, coordinate system as in Figure 6.39 

 

Figure 6.43. Displacements in global z-direction for design 1 core case at last step 
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The change in unit cell size from 50 x 50 mm for the reference core to 20 x 20 

mm for the machined one has an immediate effect on the behaviour of the sandwich 

panel, for a same face thickness. The applied buckling load turns out to be around 16 

kN, i.e., more than 5 times higher than in the previous reference case. Only the face 

nodes branch out from the point of instability, while the core nodes do not show any y-

directional displacement. In terms of stress, the instability is close to 200 MPa in aver-

age. The small fluctuations seen around this value are due to the local effect of the 

core as a reinforcement of the skins. This effect is also seen at the last step of the 

simulations, as the inflection points of the stress curve, and at its maximum compres-

sion dip. An intracellular buckling behaviour is viewed in the simulations´ images (Fig-

ure 6.43). The skin is shown buckled in turn with half-waves inwards and towards the 

unit-cells. 

6.6.3.3 Design 2 core with 0.8 mm faces 

Figure 6.44 shows the case of design 2 machined cores. Similar to design 1, an 

instability load of about 16 kN is attained, from which the face nodes are branched. As 

for the core nodes, the reference node 3, does not present displacements in y-direc-

tion, so it is not destabilised because of the skin deformation. Core node 3 belongs to 

a part of the column in which the cross sheet passes through.  Additionally, the subja-

cent small columns on each side, represented by the core's reference nodes 1 and 2, 

do suffer a "drag" deformation due to skin buckling, because of their little stiffness as 

a consequence of a small thickness and width, and additionally, they are located in the 

vicinity of the maximum skin deformation. The instability stress of the compressed face 

is in average 200 MPa, as the previous case, given that the plate dimensions are the 

same (i.e., unit cells of 20 x 20 mm) as well as the boundary conditions. Little fluctua-

tions in the stress values around 200 MPa are observed (Figure 6.44.b) due to the 

local effect of the core as reinforcement of the skins, as previously mentioned. As a 

corollary of this effect, the inflection points of the stress curve are observed in the last 

step. The peaks and dips are of lower magnitude than in design 1, presumably, due to 

the "drag" caused by the deformation of the skin on the small columns, represented by 

core´s nodes 1 and 2 and makes them not to contribute to the overall support of the 

skins. Intracellular buckling is also identified in the images of the simulations (Figure 

6.45), showing in turn half-waves between unit-cells. 
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(a) Node tracking displacements Node references for data acquisition 

 

 

(b) Top face normal stresses Plate references for data acquisition 

 

 

Figure 6.44. Results extracted from FE simulations for design 2 core case. Note: T2: 

y-direction; T3: z-direction, coordinate system as in Figure 6.39. 

 

Figure 6.45. Displacements in global z-direction for design 2 core case at last step 

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00

0

5

10

15

20

25

30

A
p
p
lie

d
 l
o
a
d
 (

k
N

)

Displacement (mm)

 Node 1 tracking (core) - T2

 Node 2 tracking (core) - T2

 Node 3 tracking (core) - T2

 Node 1 tracking (plate) - T3

 Node 2 tracking (plate) - T3

-60 -45 -30 -15 0 15 30 45 60

600

400

200

0

-200

-400

-600

-800

Y-coordinate (mm)

T
o
p
 X

 p
la

te
 s

tr
e
s
s
 (

M
P

a
)

 Plate element (instability)

 Plate element (last step)

WebWeb Web Web Web Web



6. Ultra-lightweight sandwich panels                                                                       245   

 

6.6.3.4 Analytical-numerical results 

Recalling the studies of section 6.3, representative graphs for the different main 

failure modes of a sandwich panel subjected to four-point bending are drawn within 

this section. The equations employed for the curves´ calculations are resumed as fol-

lows: for face yielding, Eq. (6.14), and Eq. (6.15); for face wrinkling Eq. (6.19), and Eq. 

(6.21); and for intracellular buckling Eq. (6.26), and Eq.(6.28).  

For analytical calculations, the buckling coefficient for intracellular buckling 𝐾 is 

attained indirectly using Eq. (6.19) and employing the critical buckling point from the 

simulations as a seed value, for later obtaining the main failure modes curves for each 

core case. Nevertheless, the analytical value found in charts is given closely to 𝐾 = 2.2 

(see Annex E). Since it is not possible to obtain the value of 𝑄𝑏 from the simulations 

for the cases considered for face wrinkling, as a first approach, a buckling coefficient 

𝑄𝑏 = 0.33 is taken as a minimum value (Table 6.4). The attained curves considered: 

the applied external load 𝑃𝑧, simulating the same testing rig employed as in previous 

sections (i.e., a lever arm of 150 mm); and the normal stresses in x-direction applied 

to the compressed faces. Both external load and normal stresses are set as a function 

of the face thickness 𝑡𝑓 (Figure 6.46). Recalling section 6.6.3, the FE results exhibited 

that the dominant failure mode is intracellular buckling in all cases analysed. The av-

erage face stresses attained are of 35 MPa for the reference core, and of 200 MPa, 

for machined cores design 1 and 2. These stresses give buckling coefficients 𝐾 = 2.45 

and 𝐾 = 2.24, respectively (Figure 6.46). The larger unit cells defined for the reference 

case as of 50 by 50 mm influence negatively the overall panel behaviour while bending, 

reaching in almost the entire proposed range of skin thicknesses, a failure due to in-

tercellular buckling Figure 6.46.a. After a face thickness of 3.1 mm, the theoretical 

model proposes a failure due to fracture, under the established conditions, while ap-

plying a load of ≈ 60 kN. Nevertheless, it interesting to remark that it is probable that 

for thicknesses greater than those of interest within this work (i.e., called as thin faces), 

other local effects such as debonding between the skin-core interphase may appear 

before a failure, for example, due to face wrinkling, but this evaluation exceeds the 

objectives of this work. The machined cores as design 1 and 2 (Figure 6.46.b and 

Figure 6.46.c) are made from unit cells of a size 20 by 20 mm. Hence, the intracellular 

buckling curves are found much more pronounced than those of the reference core, 

despite the latter having a 𝐾 factor slightly higher.  
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(a) Core reference 

  

(b) Core design 1 

  

(c) Core design 2 

  

Figure 6.46. Charts obtained by analytical-numerical approaches for square-honey-

comb cores. Left: according to applied external load 𝑃𝑧. Right: according to face 

stresses. Note: FW = Face wrinkling; IB = Intracellular buckling 
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Thus, a smaller unit cell would increase the face strength to intracellular buckling 

for the same skin thickness by approximately 5 times, according to predictions. The 

same 𝐾 factor is attained for design 1 and design 2 cores, contemplating the same 

length-to-width ratio and border conditions. The other failure mode that plays a role for 

this core cases is face wrinkling, starting at face thickness of above 1.3 mm, under the 

proposed conditions. The face wrinkling curves are very similar to each other compar-

ing the charts, lightly affected by the core out-of-plane stiffness, since they are found 

similar in value for all core cases proposed (table 6.3). 

For the core cases studied and face thickness as  𝑡𝑓 = 0.8 mm, the dominant 

failure mode is intracellular buckling, as predicted in the FE simulations.  

6.6.4 Partial conclusions 

In this section, the prediction of the behaviour of panels proposed from 3D-hon-

eycomb cores has been carried out from numerical and analytical models. Under four-

point bending and a rig similar to that proposed for the lattice-based cores, three main 

failure modes are identified. For the example case of a 0.8 mm skin thickness, the 

dominant failure mode resulted in intracellular buckling. The large unit cell size favours 

the occurrence of this failure mode above the others. 

The change in cell size directly affects the loading behaviour of the sandwich 

panel, where the failure load achieves a five-fold increase for the same studied skin 

thickness when moving from a 50 x 50 to a 20 x 20 unit cell.   

Despite maintaining a constant unit cell width-to-length ratio equal to 1, little 

differences can be observed in the buckling coefficient value for intracellular buckling 

𝐾. However, the value of 𝐾 is found very similar to the tabulated one as 𝐾 = 2.2 (Annex 

E), representing a simply supported orthotropic plate along its edges.  In general, an-

alytically the tabulated values are represented for the most common cases, i.e., plates 

with boundary conditions as simply supported or fixed plates, on some or all edges. In 

practice, in sandwich panels the contact between skins and cores turns out to be an 

elastic bond, and the tabulated values are approximations that can be taken as a ref-

erence for the calculations.  

The indirectly obtained 𝐾 values are very similar, 2.45 and 2.24, for the 50 mm 

and 20 mm unit cell case, respectively. The slight difference is presumed to be due to 

the associated support type and the local stiffness obtained in each core case at the 
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contact nodes. That is, below the contact nodes where the skin rests on the core, there 

is a local elastic stiffness provided by the wall that builds the core. For example, in the 

case of the 50 mm cell, the wall is not machined, so the core immediately under the 

skin has a full-walled base material that gives support along its edges and its local 

stiffness is higher than in the 20 mm case, where the core has only a higher local 

stiffness around the columns where the sheets intersect (refer to section 4.3.1.2). For 

this reason, it is assumed that the value of 𝐾 in the reference case is slightly higher 

than in the other two cases of design 1 and 2. This analysis exceeds the intention of 

this section, which is to exemplify the theoretical model feedback by the numerical 

models. 

Regarding to face wrinkling failure mode, only small differences in the FW 

curves are observed by the change in (global) 𝐸3𝐶. The curve is directly increased by 

the increment in 𝐸3𝐶, so that design 2 core case shows a slightly steeper curve. In this 

case, the cell size does not affect the face wrinkling. 

The versatility of the analytical model is remarkable, and it is important to note 

that other failure modes could be incorporated into the model, such as local buckling 

failure of the core material triggered by the distortion exerted by the skin on the core 

material. Also, in many cases, the failure occurs in core-to-facing bond [198]. These 

modes could be categorized as failure in the foundation, and therefore be incorporated 

as another mode of face wrinkling. This refinement of the face wrinkling failure mode 

requires further analysis beyond the practical purposes of this work.  

As future work, it is proposed to evaluate the numerical-theoretical models and 

contrast them with experimental tests associated to these core types to be finally en-

dorsed for the proposed core cases. 

6.7 Concluding remarks 

Starting from the establishment of a theoretical framework of analysis, the aim of 

this chapter was to present an analytical-numerical model for the evaluation of different 

cores of interest under bending tests, reviewing the particular case of four-point bend-

ing. As a study case, the lattice-based ultra-lightweight cores (Chapter 5) are taken as 

example, and later an extrapolation to other core cases, such as the 3D-honeycomb 

cores (Chapter 4) is proposed.  
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The design of the specimens is included as part of the work, which allowed the 

study of the load introduction for the development of the analytical models. In turn, this 

study allowed the simplification of the numerical models.  

The main failure modes described by the analytical models were of intracellular 

buckling, face wrinkling and face yielding. The main modes are graphically detailed in 

terms of the external applied load or the in-plane stress over the compressed face, 

considered as critical for the analyses, as a function of the face thickness. For the 

plotting of the maps, a literature review was necessary for establishing the values of 

buckling coefficients 𝐾 and 𝑄𝑏 as seed values. These values are then fed back and 

contrasted by the numerical and experimental values. On the one hand, the numeri-

cally attained 𝑄𝑏value satisfactorily approximates what is experimentally evidenced on 

charts (Figure 6.38). On the other hand, the 𝐾 values are also approximated ade-

quately by the numerical simulations, although little discrepancies are evident. The 

model is sensitive to these discrepancies and therefore affects the critical in-plane 

stress value on the skin. Nevertheless, two main reasons are found to such discrep-

ancies: 

- On the one hand, the way the buckling factor are calculated. The 𝑄𝑏 and 𝐾 values 

obtained from the FE simulations are set at the instability step, i.e., when the 

critical stress is reached, but the material does not fail yet (i.e., the failure load 

will be over critical as it is higher than the critical buckling point) and can keep 

bearing load and deformation, although critical and failure stresses are normally 

found close in values. For this reason, one could use another evaluation criterion 

such as the instant in which the non-linearity begins in the load-displacement 

tests. Applying this criterion, the values of 𝑄𝑏 and 𝐾 would be lightly modified on 

average, which should fit better with the FE predictions.  

- On the other hand, discrepancies between the experimental and the numerical 

results were found in the way the simulations are modelled. The numerical ap-

proach is an ideal model. It turns out to be a simplification of the observed spec-

imen and there are deviations that are not considered such as, for example, the 

connections between the skin and the rods. Although the connection nodes skin-

rods have been merged, the rods have an elastic linkage to the skin and its effect 

goes beyond the vicinity of a single node, in part due to the meniscus effect 

brought by the glue and the fact that rods are actually a 3D-element and not a 

1D-element in which the load is transmitted punctually (this effect may be more 
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evident by rods with larger diameter). If necessary, as future work, improvements 

to the numerical models are proposed, in order to adjust the experimentally ob-

served values. Among the enhancements, it is proposed, for example, to imple-

ment torsion springs in the FE model at the rod-face connection points whose 

stiffness is indirectly calculated from the experimental tests. Furthermore, the 

thickness value employed for the calculations is not completely homogeneous 

and there are local thickness deviations, mostly as a consequence of the manu-

facturing method. Such deviations can be detected from a 3D scanner to more 

approximate the FE model to the real case.  

Moreover, experimental results on lattice-based cores panels validated the pre-

dictions of the analytical and numerical models. Predictions for nominal face thick-

nesses of 0.8 mm and 1.2 mm defined cases of intracellular buckling and face wrin-

kling, then satisfactorily confirmed by experimental results. Maximum average face 

stresses are found as 213 MPa, 237 MPa and 239 MPa for lattice-cores made from 

0.5 mm, 1 mm, and 1.5 mm rod´s diameters, respectively. As a corollary of the exper-

imental tests, it is also possible to obtain the elastic modulus of the skins, whose ef-

fective experimental moduli are on average in excellent correlation with the theoretical 

values as 66.45 MPa and 67.78 MPa, respectively. 

The interest of this chapter also lied in the extrapolation of the predictive model 

to the square-honeycomb cores seen on Chapter 4. A particular face thickness of 0.8 

mm is studied. A large unit cell size favours the occurrence of intracellular buckling at 

relatively low load, and therefore, the model predicts it as the most likely to occur. In 

the example, from a change in cell size from a 50 x 50 to a 20 x 20 mm, the failure load 

was quintupled for a same skin thickness. The 𝐾 values obtained indirectly were very 

similar for both unit cell cases, being 2.45 and 2.24, respectively.  

As a final assessment, to endorse the rest of the main likely failure regions of 

the ultra-light weight cores, it is necessary to perform more experimental tests with 

specimens made from different face thicknesses. For larger thicknesses, the model 

can incorporate refinements to the main failure behaviour, such as the evaluation of 

skin-core debonding as a part of face wrinkling [198]. The latter is proposed as future 

work. 
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7 Discussion and conclusions  

The focus of this chapter is on the review of results from the previous chapters. 

Since the work´s main objective is to create sandwich panels from novel ultralight 

CFRP-based cores, a comparison of their competitiveness with known cores found in 

the literature is necessary to evaluate their performance in a sandwich structure. The 

results are discussed, and the conclusions obtained from the different chapters are 

summarised. 

7.1 Discussion  

The contribution of this work to research in the field of sandwich panels is estab-

lished not only in terms of the manufacturing of ultra-lightweight cores (3D-honeycomb 

cores), but the prediction of the mechanical properties and failure modes of the cores 

proposed. The loading cases are selected as the ones that characterize the cores in 

the usual forms such as compression and shear. The sandwich panel is evaluated then 

as a whole structure in bending.  

 To consolidate the results obtained by the mechanical characterization like the 

stiffnesses and strength attained, a contrast with other known materials is carried out 

within this section. Since the main interest lies in obtaining competitive ultra-lightweight 

cores, a common comparison practice is based on contrasting the specific properties 

of the structures obtained and their commercial counterparts, and they are highlighted 

as follows. 

7.1.1 Compressive response  

Different types of cores or geometries such as lattices, honeycombs, and foams, 

in combination with different base materials such as metals, polymers, composites, are 

contrasted to evaluate the mechanical performance in compression. The core materi-

als are summarised in Table 7.1, which also complements Figure 7.1.  

Special attention is put on relative densities of around 3% although other similar 

ones are presented to compare. The indexes of performance as 𝐸3𝑐/𝜌𝑐 and 𝜎3𝑐/𝜌𝑐, 

that is, the specific compression mechanical properties are taken as the basis for com-

parison (Figure 7.1).  
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Note. The numbers in parentheses next to the type of cores represent the relative density associated.  

Figure 7.1. Comparison of different performance indexes in compression of similar 

cores  

Since no larger differences are found among density and performance of the 3D 

square-honeycomb cores presented in this work, only the design 1 core structure (Fig-

ure 4.3) is taken as example for comparison. The present 3D square-honeycomb core 

has compression ratios of about 15 (103m2s-2) and 50 (106m2s-2), in terms of specific 

modulus and specific strength, respectively. The modulus is larger than all the cores 

assessed, followed closely by other square-honeycomb cores. In general, plate-based 

cores have a higher modulus than rod-based or foams of the same density [209]. In 

terms of strength, the present 3D square-honeycomb cores are superior to foams and 

other full-walled square-honeycomb cores, but they are outperformed by CFRP-based 

and metal-based lattice cores. Regarding the lattice-based cores proposed in this 

work, the best specific modulus is performed by the 1 mm rod lattice-based core with 

an index of around 11.5 (103m2s-2), followed by the lattices of 1.5 mm and 0.5 mm 

rod´s diameters. Then, the specific moduli are comparable to or better than other ma-

terials presented, while the specific strength top out index values of 22.5, 125 and 119 

(106m2s-2) for the lattice-cores made from 0.5 mm, 1 mm, and 1.5 mm rods, respec-

tively. This represents a great advance compared to other competing core materials 

(e.g., proposed lattice cores of 1 mm rods outperform the best of the pyramidal lattices 

of �̅� = 3.5, by 35.5 % in terms of strength and by 124.6 % in terms of stiffness). 

1.
 A

lp
or

as
®
 fo

am

2.
 E

R
G
®
 fo

am

3.
 P

yr
am

id
al
 la

tti
ce

 (3
.0

)

Pyr
am

id
al
 la

tti
ce

 (3
.5

)

4.
 S

qu
ar

e-
ho

ne
yc

om
b 

 (2
.5

)

Squ
ar

e-
ho

ne
yc

om
b 

 (5
.0

)

5.
 H

yb
rid

 p
yr

am
id
al
 la

tti
ce

6.
 S

qu
ar

e-
ho

ne
yc

om
b

7.
 S

qu
ar

e 
co

lli
ne

ar
 la

tti
ce

8.
 T

et
ra

he
dr

al
 la

tti
ce

 (3
.0

)

Tet
ra

he
dr

al
 la

tti
ce

 (3
.7

)

9.
 P

ris
m

at
ic
 d

ia
m

on
d

10
. B

C
C
 m

ic
ro

 la
tti
ce

 b
lo
ck

11
. H

ex
ag

on
al
 h

on
ey

co
m

bs

12
. E

gg
 3

D
-h

on
ey

co
m

b 

13
. 3

D
-s

qu
ar

e-
ho

ne
yc

om
b 

14
. B

C
C
-li
ke

 la
tti
ce

 D
 0

.5

BC
C
-li
ke

 la
tti
ce

 D
 1

BC
C
-li
ke

 la
tti
ce

 D
 1

.5

0

2

4

6

8

10

12

14

16
 Stiffness E/rc

 Strength s/rc

Type of cores

S
ti
ff

n
e
s
s
 E

/r
c
 (

1
0

3
m

2
s

-2
)

Present work

0

20

40

60

80

100

120

140

S
tr

e
n
g

th
 s

/r
c
 (

1
0

6
m

2
s

-2
)



7. Discussion and conclusions                                                                                253   

 

Table 7.1. Comparison of similar core materials (e.g., compression loading) 

N°.  

 

Type of cores 

(--) 

Base material 

(--) 

𝜌𝑠 

(kgm-3) 

𝜌𝑐 

(kgm-3) 

�̅� 

(%) 

Reference 

(--) 

1 Alporas® foam Al closed cell foam 2500 200 8.0 [117] 

2 ERG® foam Al open cell foam 2500 125 5.0 [117] 

3 
Pyramidal truss 
lattice 

Laminate [0/90] ° 
CFRP 

1440 
43.20 
50.40 

3.0 
3.5 

[22] 

4 
Square-honey-
comb 

Woven [0/90] ° 
CFRP 

1370 
34.25 
68.50 

2.5 
5.0 

[21] 

5 
Hybrid pyrami-
dal lattice 

Braided CFRP 1450 43.50 3.0 [191] 

6 
Square-honey-
comb 

AISI 304 7980 239.40 3.0 [153] 

7 
Square collinear 
truss lattice 

Ti–6Al–4V-coated 
SiC 

3930 377.28 9.6 [210] 

8 
Tetrahedral 
truss lattice 

Age-hardened AA 
6061 

2700 
81 
99.90 

3.0 
3.7 

[179] 

9 
Prismatic dia-
mond 

AISI 304 7980 287.28 3.6 [154] 

10 
BCC micro lat-
tice block 

EOS Ti6Al4V 4410 246.96 5.6 [211] 

11 
Hexagonal hon-
eycombs 

Woven Kevlar/914 1380 57.96 4.2 [212] 

12 
Egg honeycomb 
grid panel 

Laminate [0/90] ° 
CFRP  

1550 46.50 3.0 [122] 

13 
3D Square-hon-
eycomb  
(design 1) 

Woven [0/90] ° 
CFRP (plates) 

1350 47.64 3.52 
Present work: 
Chapter 4 
tests results 

14 
BCC-like lattice 
cores 
(D0.5, D1, D1.5) 

Uni-directional 
CFRP (rods) 

1500 
8.66 
22.92 
49.76 

0.58 
1.53 
3.32 

Present work: 
Chapter 5 
tests results 

Note: the core density values shall be taken as typical values obtained from the information available 
in the literature 
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Regarding design engineering, it is useful to compare the performance of the 

proposed materials directly with standard commercial materials such as aluminium 

based honeycomb cores (Table 7.2). Aluminium honeycombs have been established 

for many years as an extensively used sandwich cores in the aircraft and automotive 

industries [213]. Their main characteristics are based on the unit cell size and the wall 

thickness, which also translate into the core´s density. Their minimum available core 

density is about 16 kgm-3.   

Table 7.2. Comparison with a reference commercial core (e.g., compression loading) 

Type of cores 

(--) 

Base material 

(--) 

𝜌𝑐 

(kgm-3) 

𝐸3𝑐 

(MPa) 

𝜎3𝑐 

(MPa) 

Reference 

(--) 

Hexagonal HexWeb  

(3/8”, .0007 unit-cell) 
Aluminium 5052 16 68.9 0.34 [214] 

Hexagonal HexWeb  

(3/8”,.001 unit-cell) 
Aluminium 5052 25.6 137.89 0.65 [214] 

Hexagonal HexWeb  

(3/8”, .002 unit-cell) 
Aluminium 5052 48 482 2.13 [214] 

Hexagonal HexWeb  

(3/16”, .001 unit-cell) 
Aluminium 5052 49.65 517 2.31 [214] 

3D Square-honey-
comb 
(design 1) 

Woven [0/90] ° 
CFRP (plates) 

47.64 720 2.25 
Present work: 
Chapter 4 
tests results 

BCC-like lattice cores 
(D0.5, D1, D1.5) 

Uni-directional 
CFRP (rods) 

8.66 
22.92 
49.76 

33.91 
267.8 
472.55 

0.22 
2.87 
5.87 

Present work: 
Chapter 5 
tests results 

Note: the compressive values are taken from stabilized samples in all cases 

The minimum achievable density in this work is limited by the technology avail-

able to manufacture the ultra-lightweight cores. The minimum presented here belongs 

to the lattice-cores of 0.5 mm rods, with a core density of 8.66 kgm-3. This value could 

be even lower if thinner commercially rods were used, for example, as rods of 0.3 mm 

of diameter. Moreover, considering the aluminium honeycomb of density ≈ 25 kgm-3, 

the lattice-cores with 1 mm rods do not only present a lighter density (≈ 23 kgm-3) but 

also, they double their compressive elastic modulus and quadruplicate their compres-

sive strength. On the side of the core densities ≈ 48 kgm-3, the elastic moduli are closer 

to each other, in which the aluminium counterparts achieve 482 MPa and 517 MPa. 
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The 3D square-honeycomb cores present on average 720 MPa, that is a 1.5 and 1.4 

times enhancement. The lattice-core of 1.5 mm are on average in the same order of 

elastic modulus as their aluminium equivalent. In terms of strength, both aluminium 

and CFRP square-honeycomb are on the same value order. Remarkably, the lattice-

core based present almost 2.6 times higher compressive strength.  

7.1.2 Shear response  

Analogously to the last section, the shear core´s performance is assessed within 

this section. The average specific shear modulus and shear strength performance of 

the proposed cores are compared to competing sandwich structures and are briefly 

quoted in Table 7.3 which complements Figure 7.2. 

In this work, the specific shear modulus presented by the 3D square-honeycomb 

core is comparable to other similar core morphologies like the full walled square-hon-

eycomb cores, and in some cases, better than several of the lattices-truss cores as the 

X-type. The fibres´ orientation play a critical role in plate-based cores. In shear loading 

the maximal loads stiffness and strength are found at ± 45 ° [170], if the fibres longitu-

dinal axis are not oriented parallel to this angle, the shear payload may be much lower. 

For instance, by adding ± 45 ° layers into the composite lay-up, the shear performance 

of the laminate may be enhanced. Likewise, working with lattice structures represent 

certain advantages, because the trusses are oriented to a desired angle, and this trans-

lates into a higher rigidity or strength. 

The lattice-based cores outperform their counterparts and dominate the scene. 

The lattice-core developed in this work show performance indexes of 5.3, 6, and 4.7 

(103m2s-2), and of 33, 46, and 27 (106m2s-2), for the shear moduli and strengths shown 

by the rod´s diameter 0.5 mm, 1 mm, and 1.5 mm, respectively. These values repre-

sent an enhancement in moduli from 5 to 6 times higher than the square-based hon-

eycombs. The strength index is also better from 2.7 to 4.5 times than the square-hon-

eycombs cores. 

The lattice-cores proposed exhibit a higher performance in shear moduli than 

the other assessed cores, only outperformed in strength by the pyramidal truss lattices 

based on CFRP laminates. In this case, the manufacturing process would be the main 

focus to enhance the mechanical properties in future work. Additionally, understanding 
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the failure behaviour of the cores and setting out the material position and orientation 

is also a way to improve performance. 

Table 7.3. Comparison of similar core materials (e.g., shear loading) 

N°.  

 

Type of cores 

(--) 

Base material 

(--) 

𝜌𝑠 

(kgm-3) 

𝜌𝑐 

(kgm-3) 

�̅� 

(%) 

Reference 

(--) 

1 
Square-honey-
comb 

Woven [0/90] ° 
CFRP 

1370 
34.25 
68.5 
137 

2.5 
5.0 
10.0 

[21] 

2 
Pyramidal truss 
lattice 

Laminate CFRP 1550 

9.92 
19.38 
28.06 
43.87 

0.64 
1.25 
1.81 
2.83 

[151] 

3 
Octet-truss lat-
tice 

Woven and laminate 
CFRP 

1440 

24.48 
77.76 
135.36 
187.2 
228.96 

1.7 
5.4 
9.4 
13.0 
15.9 

[176] 

4 
Square-honey-
comb 

Hybrid CSH/foam 
and woven CFRP 

N/A 123 N/A [139] 

5 
Square-honey-
comb 

Hybrid HCSH/foam 
and woven CFRP 

N/A 
78 
103 
150 

N/A [139] 

6 
Pyramidal truss 
lattice 

Laminate CFRP 1440 

43 
72 
101 
144 

2.98 
5.0 
7.01 
10.0 

[124] 

7 
X-type lattice 
truss 

Laminate CFRP 1543 
38.58 
55.55 
86.41 

2.5 
3.6 
5.6 

[215] 

8 
3D Square-hon-
eycomb  
(design 1) 

Woven [0/90] ° 
CFRP (plates) 

1350 47.64 3.52 
Present work: 
Chapter 4 
tests results 

9 
BCC-like lattice 
cores 
(D0.5, D1, D1.5) 

Uni-directional 
CFRP (rods) 

1500 
8.66 
22.92 
49.76 

0.58 
1.53 
3.32 

Present work: 
Chapter 5 
tests results 

Note: the core density values shall be taken as typical values obtained from the information available 
in the literature 
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Note. The numbers in parentheses next to the type of cores represent the relative density associated.  

Figure 7.2.  Comparison of different performance indexes in shear of similar cores 

Furthermore, the shear performance of the designed cores with standard mate-

rials such as the aluminium honeycomb core is presented as well for comparison within 

this section. Traditional honeycombs cores have hexagonal cells. Thus, the cores have 

a remarkable anisotropy depending on the orientation of the cells, mainly due to the 

manufacturing process that produces double cell walls in one direction and single walls 

in the other (corrugation or  the expansion processes [51]). This represents a drawback 

of the in-plane strength as a function of the load orientation [155], since the walls are 

not oriented parallel to it, as the two main directions L and W, which could be consid-

ered a disadvantage due to the high dependence on the geometry orientation. In this 

work, these negatively geometric features are saved since the cores present symmet-

rical unit cells oriented parallel to the global coordinates reference.   

Looking at the lightest materials, the lattice-based on 0.5 mm attained almost 

the same strength of the aluminium counterpart, but with half of the density. The shear 

moduli are of the same order in W direction and about the half in L principal direction. 

Regarding the cores of almost 25 kgm-3, the shear strength of the lattice-based mate-

rials doubles the aluminium cores, and the shear moduli are of the same value. Finally, 

for core densities ≈ 48 kgm-3, the properties exhibited by the lattice-cores and the alu-

minium honeycomb are of the same order in terms of strength, but outperformed by 

the aluminium honeycomb in terms of moduli (310 MPa to 232 MPa), only in L principal 
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direction. By enhancing the manufacturing process of the lattice-cores, theoretically 

the shear modulus could achieve 447 MPa, and exceeding the modulus of the com-

mercial core counterpart. 

As previously stated, the 3D square-honeycomb cores are outperformed by the 

others of same density, because they fibre orientation are not adequate for shear load-

ing, although they are comparable to other similar core materials as seen in Figure 7.2. 

Table 7.4. Comparison with a reference commercial core (e.g., shear loading) 

Type of cores 

(--) 

Base material 

(--) 

𝜌𝑐 

(kgm-3) 

𝐺31𝑐 

(MPa) 

𝜏31𝑐 

(MPa) 

Reference 

(--) 

   L W L W  

Hexagonal HexWeb  

(3/8”, .0007 unit-cell) 
Aluminium 5052 16 82.73 48.2 0.31 0.21 [214] 

Hexagonal HexWeb  

(3/8”,.001 unit-cell) 
Aluminium 5052 25.6 144.8 75.8 0.59 0.34 [214] 

Hexagonal HexWeb  

(3/8”, .002 unit-cell) 
Aluminium 5052 48 296 146 1.37 0.86 [214] 

Hexagonal HexWeb  

(3/16”, .001 unit-cell) 
Aluminium 5052 49.65 310 151 1.44 0.86 [216] 

3D Square-honey-
comb  
(design 1) 

Woven [0/90] ° 
CFRP (plates) 

47.64 52.52 0.536 
Present work: 
Chapter 4 
tests results 

BCC-like lattice 
cores 
(D0.5, D1, D1.5) 

Uni-directional 
CFRP (rods) 

8.66 
22.92 
49.76 

45.85 
137.02 
232.59 

0.29 
1.06 
1.36 

Present work: 
Chapter 5 
tests results 

Note: the shear values are taken from stabilized samples in all cases 

7.1.3 Ashby-style charts  

In order to compare the mechanical properties of different base materials, Ashby 

and Bréchet  [101] have proposed the material-property charts for engineering materi-

als, regarding to different features of interest such as the compressive strength-density 

(Figure 7.3), shear strength-density (Figure 7.4) and bending strength-density charts 

(Figure 7.5). Many authors aimed to fill in the gaps between existing and unattainable 

materials from the maps by making hybrid materials, and thus, an increasing interest 

exists in ultra-lightweight cores for weight sensitive structures [135].   
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7.1.3.1 Compressive behaviour 

The out-of-plane compressive behaviour is also studied in a qualitative manner 

by means of the Ashby-style plots. Figure 7.3 includes compressive data for CFRP 

honeycomb cores [21], CFRP pyramidal lattices [22,103], titanium matrix lattices [210], 

aluminum tetrahedral lattices [179], stainless steel honeycomb cores [153] and differ-

ent metallic foams [117]. 

 

Figure 7.3. Ashby-style plot: out-of-plane compressive strength as a function of the 

material density. 

 The cores of the present work are plotted as the green-black slashed balloons 

on Figure 7.3. 3D square-honeycomb cores (design 1 cores) are comparable and com-

petitive to traditional square-honeycomb CFRP-based cores with densities less than 

50 kgm-3. For instance, they have almost the same strength of the plotted Ni-foam but 

having four times less density. Also, design 1 cores outperform the metallic and poly-

meric foams of the same density, only exceeded by the CFRP-based lattice-cores. The 

proposed lattice-based cores present the best compressive performance among their 

same densities’ counterparts. Regarding to 0.5 mm rod diameter lattice-core, no other 
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competing material is found in the surroundings of 8.6 kgm-3, giving a chance for further 

material development.  

7.1.3.2 Shear behaviour 

As showed in previous section, features of interest are evaluated qualitatively 

by the Ashby-style charts. In this section, the shear behaviour as a function of the 

density is addressed (Figure 7.4) including data of CFRP honeycomb cores [21], CFRP 

pyramidal lattices [151,176], titanium matrix lattices [210], different metallic foams [117] 

and aluminum tetrahedral lattices [177]. 

 

Figure 7.4. Ashby-style plot: shear strength as a function of the material density. 

The cores proposed in this work present properties comparable to several same 

densities´ counterparts. The design 1 square-honeycomb core is found on the bottom 

place of the red balloon corresponding to the CFRP honeycomb cores, influenced by 

the fibre orientation and the shear loading case. Nevertheless, they are comparable to 

the aluminium-based lattices and outperform the metallic and polymeric foams. Con-

cerning to the lattice-based developed cores, they outperform the CFRP traditional 
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honeycomb cores and the aluminium-based materials, only comparable to the pyram-

idal CFRP lattices. Additionally, the lightest lattice materials as the ≈ 8.6 kgm-3 material 

finds its place alone on the chart, also allowing further material developing, since it is 

a region still non deeply explored.  

7.1.3.3 Bending behaviour 

As explained in Chapter 3 and Chapter 6, the combination of two materials in a 

sandwich-type structure, thought of as two skins and a core in the middle, provides 

great rigidity to bending with a very small increase in weight as the core increases in 

thickness, as a result of the increment in the second moment of area of the entire 

section.  

In the previous sections, the focus has been put on the comparison of the cores 

under study with the materials commonly used as cores in sandwich structures. In 

other words, only one of the components that made up the sandwich has been dis-

cussed. Since the sandwich panels are made from different components, the proper-

ties´ comparison among materials demands other ways of study. Therefore, bending 

properties of different available sandwich materials are not easily attainable in the lit-

erature, although two different approaches are mentioned below.  

On the one hand, many authors have proposed a comparison through a non-

dimensional parameter called load index, which depends on the applied shear load, 

the moment generated by the shear load, geometrical variables such as the width and 

the total thickness of the sandwich section. This parameter is matched to the failure 

modes of both the skins and the cores, and is plotted as a function of another non-

dimensional parameter known as the weight index, which depends on the weight and 

density of the sandwich [217–219]. On the other hand, Ashby [220] proposes treating 

the sandwich panel as a material with its own set of properties. Ashby simulates a 

monolithic homogeneous material by means of the calculation of equivalent properties. 

These equivalent properties include a density, a modulus, and a flexural strength of 

the sandwich panel. Then it would be possible to compare its properties directly with 

conventional materials through Ashby´s style diagrams such as flexural strength vs. 

density. Given the practicality and simplicity of Ashby´s proposal  [220], this work will 

shortly addressed the sandwich flexural strength under Ashby´s method guidelines as 

follows. 
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 First, the equivalent density �̃� of the sandwich is defined in terms of the volume 

fraction occupied by the faces 𝑓𝑓𝑎𝑐𝑒𝑠 and its associations with the core density 𝜌𝑐 and 

face density 𝜌𝑓, as of a rule of mixtures (Eq. (5.1) and Eq. (7.2)). 

𝑓𝑓𝑎𝑐𝑒𝑠 =
2𝑡𝑓

ℎ
 (7.1) 

�̃� = 𝑓𝑓𝑎𝑐𝑒𝑠.𝜌𝑓 + (1 − 𝑓𝑓𝑎𝑐𝑒𝑠)𝜌𝑐 (7.2) 

 As seen in Chapter 6, the flexural strength is equal to the maximum stress in 

the outer fibres of the sandwich section at the instant of failure. Since thin faces are 

assumed, the stress is homogenized through the face thickness. In other terms, the 

normal stress on the faces is assumed to be equal to the bending stress due to the 

bending moment, as proven by the equivalency of Eq. (6.6) and Eq. (6.9). Furthermore, 

different failure mechanisms compete, although a core failure (i.e., a foundation failure) 

or a face failure are identified. The failure is then attained by the mechanism that de-

mands the lowest load to appear. Ashby [220] defines the equivalent flexural strength 

�̃� equating the flexural stress depending on the maximum moment applied to the sec-

tion, to the stress that defines the failure mechanism, either as a core failure or as a 

face failure. In this work, the flexural strength is analogously defined as Eq. (6.33) for 

face yielding, Eq. (6.35) for face wrinkling, and Eq. (6.37) for intracellular buckling (see 

Chapter 6). The last mentioned equations are employed as the equivalent flexural 

strength proposed by Ashby.  

Table 7.5. Sandwich data for the equivalent flexural properties analysed 

Sandwich  �̃� �̃� Failure 

N°  Type of core/face thickness (kgm-3) (MPa) mode 

S1 3D Square-honeycomb (design 1) / 𝑡𝑓 = 0.8 129.08 200* IB* 

S2 BCC-like lattice cores (D 0.5) / 𝑡𝑓 = 1.21 133.17 213 FW 

S3 BCC-like lattice cores (D1) / 𝑡𝑓 = 0.8 105.83 237 IB 

S4 BCC-like lattice cores (D1.5) / 𝑡𝑓 = 0.8 131.08 239 IB 

Obs. * Theoretical value/mode. FW: face wrinkling; IB: intracellular buckling 

Table 7.5 resumes the flexural properties homogenised to the sandwich beams. 

Remarkably, the sandwiches present equivalent densities of the same order in the 

range [105 – 133] kgm-3, and very similar bending strengths. The values are summa-

rized and plotted into the Ashby-style chart shown as Figure 7.5.  
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Note: Adapted from [220] 

Figure 7.5. Ashby-style plot: flexural strength as a function of the material density 

Since a briefly comparison as example is intended within flexural properties of 

sandwich materials, only the materials exhibited in reference [220] are contrasted to 

the cores of the present work, mainly due to the lack of available information and the 

need to homogenized the sandwich´s flexural properties. Theferore, the sandwiches 

materials developed in this work present higher flexural strengths for a same density 

material. Moreover, they outperform most of the CFRP-facesheets/polymeric foam 

sandwich materials, presenting one order of magnitude less density in many cases. 

The failure modes also influence the loading capability of the sandwich. The cores 

influence may be threated as of less importance regarding bending, since the 

maximum bending loads are resisted by the skins on the outer fibres. Nervertheless, 

the cores do influence the magnitude of the skin loading capability as its foundation, 

when considering the failure modes. A larger core unit-cell influence the intracellular 

buckling behaviour of the whole sandwich, allowing larger payload in bending if the 

core cells are smaller. Also they influence the face wrinling behaviour, as they 

increment their out-of-plane rigidity as seen Chapter 6.  
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The bending rigidity is also attainable, e.g., from the sample´s deflection and the 

applied load, as 𝐸𝐼 ≈ 𝐷𝑥 as seen in chapters 3 and 6. The face sheets´ size and their 

positioning about the neutral line in bending are the main factors that govern the de-

flection behaviour. Nevertheless, the deflection obtained from the experiments is very 

sensitive to the testing rig and the test setup, as well as the manufacturing process. 

The deflection of the specimen obtained vertically within the supports is approximately 

in the range 0.63 – 1.03 mm for the lattice core cases. Taking into account that the 

span of the supports is 𝐿2 = 170 mm, the displacement-to-length ratio is almost 0.3% 

and 0.6%, respectively, i.e., a small ratio between deflection and specimen dimension. 

Thus, under the given conditions, calculating an equivalent bending modulus from the 

sandwich beam as a homogeneous material as Ashby´s proposal (applying ideal geo-

metrical values combined with experimental values) would only represent an unreliable 

approximation of the analyzed cases within this work, due to the sensitiveness of the 

measure. For this purpose, the equivalent bending modulus is not represented graph-

ically. 

7.2 Difficulties found 

In general terms, the difficulties encountered throughout this thesis were seen 

according to different aspects mainly as the manufacturing processes and the tests. 

Regarding to the manufacturing process, the reproducibility of the specimens 

through a reliable manufacturing method was found to be an issue. In the case of the 

3D- honeycomb cores, the manufacturing method is simple and relatively inexpensive 

(out-of-autoclave process) resulting in good quality parts. However, many steps, espe-

cially in the assembly of the cores from CFRP-sheets, are manual and this leads to 

imperfections, e.g., in the sheet positioning despite using grooved guides. In addition, 

water jet cutting method (WJC) to obtain the desired geometries has proven to be ef-

ficient, since several sheets are stacked together and cut at the same time, being the 

cutting quality very good at the edges. By enhancing the manufacturing process, for 

example, by reducing the handwork, the incorporated imperfections could be mitigated, 

and therefore, the core´s performance would be much higher. The main disadvantage 

of the WJC method is that for example, when using more than 10 stacked CFRP sheets 

(> 6.5 mm) and a CFRP base plate size approx. 350 mm by 250 mm, there are notice-

able vibrations induced by the water pressure against the material and in some cases, 
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delamination damage was seen in the base material mainly in the surroundings of the 

central area of the stack, since the table clamps of the WJC process are not able to 

exert sufficient clamping pressure. However, using five sheets and reducing the CFRP 

base plate size to approx. 250 mm by 150 mm no delamination effects were seen, but 

the number of sheets to be machined at the same time is limited, which increases the 

production time. For the case of lattice type cores, it is encouraged that the bonding 

area between core and skins must be optimized from the manufacturing process to 

better achieve the strength potential of the rods. For example, in the case of plate shear 

load case, the 1 mm and 1.5 mm rods are limited in its shear strength capabilities 

because of debonding and cannot reach the full bearable stress (for example, only  

1.06 MPa instead of 2.25 MPa, for 1 mm rod as seen in Chapter 5). In general, the 

manufacturing time limited in some cases the production of samples (for example, re-

garding to the larger shear specimens), and thus, the production time must be im-

proved.  

Concerning the tests, all of them were carried-out satisfactorily, although some 

enhancements opportunities were found. For the compressive tests, the use of a 

spherical bearing as base support of the loading plates compensates substantially the 

manufacturing imperfections as the bearing corrects the wrong positioning of the sam-

ple under load, improving the load distribution among the struts. However, premature 

failure was seen in compression samples (for example in Chapter 4), because the dis-

tribution of the loads is still not ideal. For the shear tests, it was necessary to design 

and to machine the steel plates (both demanded more time than planned) in a way that 

the samples could fit properly in the test rig, targeting that the line load passes through 

the main diagonal of the core (Figure 4.35) as recommended in the standard [167]. In 

the case of bending tests, the size of the bending samples (490 x 65 x 27 mm) also 

represented a challenge to obtain and to test. For the bending tests, it was necessary 

to employ supports and punches according to the dimension of the samples, which 

demanded time to correctly setup and fit into the testing machine. The use of smaller 

redesigned samples may be useful as improvement. Regarding the shear and bending 

samples, a larger number of specimens may be needed to fulfil the statistical demands 

if required to better adjust the failure predictions, and thus, they are proposed to be 

obtained and tested as future work. 
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7.3 Conclusions 

A summary of the conclusions gathered along this dissertation is presented and 

resumed within this section: 

1. The manufacturing process detailed in Chapter 4 for 3D honeycomb cores rep-

resents an advantage for obtaining ultra-lightweight cores. The traditional me-

tallic lattice materials such as pyramidal or tetrahedral geometries require cut-

ting and bending punches as well as dies to build up the cores, followed by a 

welding step for attaching the face sheets [125]. Here, the proposed cores pre-

sent an easier and faster fabrication method, having less and simpler manufac-

turing steps.  

2. The use of pultruded CFRP-based rods for sandwich cores for BCC-like struc-

tures, allows attaining ultra-lightweight densities as seen in Chapter 5. 

3. As seen in Chapters 4 and 5, the cores´ elastic properties in non-conventional 

sandwich panels such as 3D-honeycombs or lattice-based, depend directly on: 

(i) the properties of the base material, (ii) the amount of base material available 

within the unit cell, and (iii) the material positioning or the unit cell´s topology, 

which is taken as basis for studies:  

i. The properties of the base materials will determinate the global properties of the 

cores. Employing CFRP materials represents an advantage in the development 

of weight sensitive structures, because they provide very high specific modulus 

and strength, and they outperform their metallic counterparts as seen in section 

7.1. The core modulus depends directly on the modulus of the parent material 

as seen in chapters 4 and 5. Moreover, the core strength depends also on the 

parent material properties, in which the CFRP materials stand-out compared to 

many engineering alloys ( see Figure 7.3 and Figure 7.4). 

ii. The amount of base material bearing the load within a unit cell is exemplified in 

different terms regarding to the analysed core as follows: 

a. For the case of machined 3D-honeycombs, the number of CFRP-sheets, 

and the sheet´s thickness are the factors that control the main core proper-

ties. For example, the denser the unit cell, the greater the elastic modulus 

and the strength of the core. The amount of material bearing the load influ-

ence the failure behaviour of the core from elastic buckling failure to fracture 

of the base material. The material orientation bearing the load i.e., fibre angle 
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as explained in Chapter 4, also affects the final performance of part. Thus, 

the fibre orientation must be set according to the load case. 

b. For the case of lattice-materials, the number of CFRP-rods in a unit cell and 

the rod´s diameter play a fundamental role in the core’s properties. For in-

stance, the larger the diameter or the rod´s number, the greater the core´s 

modulus and strength (see Chapter 5). The rod´s size also influence the 

core´s failure modes, from Euler buckling to fracture or debonding. The ap-

propriate rod orientation influences the core´s strength, as seen in Annex D.  

iii. The cell´s topology influence the core´s behaviour:  

a. For the case of machined 3D-honeycomb cores, the cell size influences the 

failure mode of the core, from torsional buckling to plate buckling. The core´s 

machined geometries did not have a crucial effect on the cores´ compressive 

behaviour since the elastic moduli and strength are found almost equal 

among the cores. In fact, the fibre orientation in combination with the topol-

ogy may play a fundamental role in core´s behaviour. In shear loading, the 

thinner the struts, the larger the bending term summed to the shear term, 

and ergo, the smaller the shear strength, as seen in design 2 cores.  

b. For the lattice-cores, the rod´s angle and positioning (could be also trans-

lated into cell´s size) influence the positioning of the mid-plane linking node 

(Figure 5.11) as can seen in Annex D. This effect also determinates the fail-

ure mode in compression or shear as of, for example, Euler buckling or frac-

ture, and influences the core´s strength. Moreover, the mid-plane node influ-

ences the failure behaviour of the unit cell, in compression and shear, 

throughout the Euler´s k-factor, varying from a value 1 (two rod´s end simply 

supported) to 0.5 (two rod´s end fixed). Since the core-skin linkage is elastic, 

the k-factor may be found within the range above mentioned. 

4. On the other hand, the flexural properties of a sandwich structure depend mainly 

on the parent material of the skins, their thickness, the stiffness of the cores and 

the size of the unit cell. The buckling coefficients also influence the flexural 

strength of the sandwich beam. The above-mentioned parameters directly af-

fect the sandwich´s failure modes, from face wrinkling or face intracellular buck-

ling to face fracture (see Chapter 6). Additionally, the use of a thick skin in com-

bination with a core with a relatively small stiffness, results in a face wrinkling 

failure, in other words a foundation failure; the use of a thin skin combined with 
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a stiff core results in intracellular buckling failure as proposed in Chapter 6. The 

optimal face thickness may be given by analyzing the potential failure modes 

and the loading requirements. Furthermore, the unit cell size promotes the in-

tracellular buckling failure mode at relatively low load. For example, when using 

3D-honeycomb as core, switching the cell size from a 50 mm to 20 mm, the 

failure load is five times higher considering a same skin thickness.  

5. In this work, the core´s specific properties defined in terms of compressive and 

shear modulus and strength demonstrate the competitiveness against other 

core materials (see section 7.1), despite not achieving the full potential of the 

predicted payload capability. Remarkably, the proposed cores showed better 

compressive performances and comparable to better shear properties as stiff-

ness or strength compared to traditional aluminium honeycomb cores com-

monly used in aerospace applications.  

6. The theoretical and numerical calculations revealed the capabilities of the pro-

posed CFRP-based cores and sandwich structures, predicting their quasi-static 

mechanical properties and failure behaviour, later confirmed by experimental 

tests. As outcome of this work, the proposed cores are promising candidates for 

ultra-lightweight sandwich applications. 
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8 Resume and outlook  

The novelty of this dissertation is up to the contribution to new designs, a man-

ufacturing path, and elastic properties predictions on novel cellular core-type materials. 

The loading cases for studying the mechanical behaviour of the cores are selected as 

out-of-plane compression, plate-shear, and bending. By means of micromechanical 

models from analytical and numerical approaches, the properties and failure modes 

are foreseen, later validated by the experimental tests with very good correspondence. 

Two different core proposals are investigated as 3D-square honeycomb cores 

and BCC-like lattice-cores, both having CFRP as parent materials. The cores achieve 

the “ultra-lightweight cores” denomination, since they attained, on average, less than 

≈ 48 kgm-3 densities, also taken as primary target function. The cores present excellent 

mechanical performances compared to other research works, and to their commercial 

counterparts of the same density.  

Since the cores are intended for sandwich applications, a sandwich structure is 

also designed, assembled, and studied under a four-point-bending loading case, iden-

tifying in advance via theoretical and numerical studies the failure modes, and corrob-

orated later by experimental tests.  

The proposed cores represent an alternative to known core materials for ultra-

lightweight sandwich applications, in terms of mechanical response and specific prop-

erties. 

8.1 Resume  

A review of the general outcomes of this work are assembled in this section: 

1. When using CFRP, the parent material´s elastic properties are attainable in ad-

vance, knowing the main components´ features (i.e., matrix and fibres) and ap-

plying theoretical approaches as the classical laminate theory, as seen Chapter 

2, and detailed in Annex B. CFRP-based materials provide very high specific 

modulus and strength to the main structure, at the same time, outperforming 

their metallic counterparts for weight sensitive applications. 

2. Sandwich structures bear the load according to different loading cases. In Chap-

ter 3, they are resumed as: out-of-plane compression and plate-shear loading, 
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which are mainly borne by the core; and bending, where the skins bear in-plane 

tensile or compressive loads. 

3. For evaluating the cores: the loading cases are established as quasi-static out-

of-plane compression and plate-shear. For evaluating the sandwich as a struc-

ture: four-point-bending is considered. Micromechanical and macromechanical 

models are developed for predicting the elastic properties, by analysing a rep-

resentative unit cell and using parent material properties. FE models give sup-

port to the theoretical approaches, establishing the most likely failure modes. 

Samples are manufactured according to each loading case. Good correspond-

ence is found when predictions are contrasted to experimental results. 

4. There are two cores´ proposals: 3D honeycombs cores (Figure 4.2, Chapter 4); 

and BCC-like lattice cores (Figure 5.2, Chapter 5). The real average densities 

are in the range ≈ [38 – 47] kgm-3 and ≈ [8 – 49] kgm-3, respectively. In both 

cases, the cores are considered as ultra-lightweight cores.  

5. There are two sandwich proposals (Chapter 6): lattice-based cores, employing 

0.8 mm and 1.21 mm of face thicknesses from CFRP 2x2 twill-woven-plates in 

a 4- and 6-lay-up configuration, respectively, with a [0/90] ° fibre orientation; and 

3D honeycombs-based cores, using 0.8 mm of face thickness. 

6. Novel manufacturing paths based on the interlocking method are achieved for 

fabricating ultra-lightweight 3D honeycomb cores. The cores have been manu-

factured from CFRP plain-woven-plates in a 3-lay-up configuration, with [0/90] 

° fibre orientation, then machined into the desired topology by a CNC water-jet 

cutting tool, and later assembled. 

7. In 3D honeycomb cores, the failure behaviour under compression is governed 

by torsional buckling in all machined cases, and of plate elastic buckling in ref-

erence cores. 

8. The average compressive strength of the 3D honeycomb cores is in the range 

of [2.2–2.7] MPa, while the elastic modulus is in the range of [0.72–1.12] MPa. 

9. The failure mode in shear of the 3D honeycomb cores is dominated by shear 

failure for the machined cases, and of debonding for the reference cores. The 

theory of a Timoshenko-like beam is also confirmed by FE calculations. 

10. The average core shear strength of 3D honeycomb cores is in the range of 

[0.33–0.54] MPa, and the shear moduli in the range of [17.14–52.52] MPa. 
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11. The use of uni-directional CFRP-rods with three different diameters as 0.5mm, 

1 mm and 1.5 mm enables ultra-lightweight cores with BCC-like topologies.  

12. The failure behaviour of the lattice-cores to compression is dominated by Euler 

buckling for the smaller diameters and rod´s fracture for the largest. 

13. The compressive elastic moduli of the lattice-cores are found as 33.91 MPa, 

267.8 MPa and 472.55 MPa, while maximum compressive strengths of 0.22 

MPa, 2.87 MPa and 5.87 MPa are attained for diameters of 0.5 mm, 1 mm, and 

1.5 mm, respectively. 

14. In shear loading, the govern failure modes of the lattice-cores are found as Euler 

buckling for the thinnest diameter case, and pull-out for the other rod´s cases. 

15. Average peak shear moduli of the lattice-cores of 45.85 MPa, 137.015 MPa and 

232.591 MPa, and shear strengths of 0.29 MPa, 1.06 MPa and 1.36 MPa are 

observed for rods´ diameters of 0.5 mm, 1 mm, and 1.5 mm, respectively.  

16. With the help of support members, large samples are obtained for four-point-

bending. 

17. Flexural properties mainly depend on the thickness skins, the core´s out-of-

plane compressive stiffness and the size of the unit cell.  

18. The bending failure modes attained are face wrinkling or face intracellular buck-

ling. The thicker the skins or the weaker the cores, the higher the face wrin-

kling´s probability. The thinner the skins, the higher the intracellular buckling´s 

chance.  

19. The maximum average face stresses or flexural strength of lattice-cores based 

samples are found as 213 MPa, 237 MPa and 239 MPa for lattice-cores made 

from 0.5 mm, 1 mm, and 1.5 mm rod´s diameters, respectively. 

20. From the theoretical models, the buckling coefficients 𝑄𝑏 and 𝐾 are indirectly 

attainable with help of the numerical results or the experimental results. 

21. As extrapolation of the models developed, the bending case for the 3D-honey-

comb cores is assessed via numerical approaches. 

22. The cell´s size affects the sandwich´s flexural strength. From a change in the 

cell´s size from 50 mm to 20 mm, the failure load is quintupled for the same 0.8 

mm skin´s thickness (intracellular buckling failure mode). 

23. The competitiveness of the proposed material compared to other known mate-

rials used as sandwich cores is assessed (Chapter 7).  
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24. The material has shown better mechanical performances in most cases com-

pared to their commercial counterparts. 

8.2 Outlook  

Within the framework of this dissertation, opportunities have arisen to improve 

and further develop the topics discussed. These improvements are intended as a pro-

posal for future work. 

a. Core design improvements: the shear properties of 3D-honeycomb cores could 

be possible by changing two layers of the plain woven CF-lay-up into 45 ° orien-

tation. The following new lay-up is proposed: [±45,0/90, ±45] °, although with a 

decrease in the out-of-plane compressive stiffness and strength. This improve-

ment could be even enhanced by its combination with new machined geometries 

as Figure 8.1. 

 

Figure 8.1. New geometries proposed for enhancing shear properties of 3D-honey-

comb cores 

Moreover, varying the cell size in lattice cores would give a higher buckling load, 

for example, in lattice-cells of 0.5 mm rods. Only by displacing half a cell in each 

direction would it be possible to obtain up to three contact points along a rod, 

ideally increasing the actual buckling failure load from 0.2 MPa to ≈ 1 MPa. The 

cell´s size may also affect the flexural failure modes, especially when the intra-

cellular buckling mode has preference. 

 
b. Further development of FE models: the models are sensitive to discrepancies 

that are not taken into account in the calculations. Unequal load distribution dur-

ing sample testing, led to local premature failures. By small imperfections intro-

ductions in FE models, it could be inferred how they affect the overall loading 
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capability throughout the overloading on other struts. In lattice cores, the rods 

present an elastic linkage at the mid-plane node and to the skin. For a refinement 

in the FE simulations, its recommended to implement torsional springs at the rod-

rod and rod-face connection points whose stiffnesses are indirectly calculated 

from the experimental tests. This could better approximate the Euler k-factor, and 

the bending buckling coefficients 𝐾 and 𝑄𝑏 according to experimental tests. 

 

c. Improvement of data and testing: the face thicknesses on bending samples 

present local deviations affecting locally the face rigidity. Their dimensions could 

be measured using more precise instruments such as 3D-scanners to better ap-

proximate the FE model to the real case. More samples are needed to finer en-

dorse the proposed failure models in all cases. The models could be also ex-

panded by incorporating other cell sizes, rod´s diameters or face thicknesses, 

possibly extended to other failure modes. Also, the experimental bending re-

sponse of sandwich plates with 3D-honeycomb cores and dynamic tests are pro-

posed to complement the theoretical and numerical investigations, and deepen 

the reliability analysis of the materials proposed  

 
d. Potential applications and scaling manufacturing studies: taking advantage 

of the hollow pattern or open cells of the cores, the multifunctional capabilities as 

heat transferring, fluid flowing, cables or electronics embedding, foams reinforc-

ing for damping and stiffness efficiency, among others, may be of interest and 

shall be proven. The manufacturing costs are also of technological interest and 

shall be evaluated, also considering semi-automatized processes for quality en-

hancements. The potential applications of the sandwich materials are not limited 

to the transport industries (aerospace, automotive, railroads or ships), but also 

could be extended to optical branch industries (e.g., telescope support plates). 

Further exploration of the utility of these structures into other applications is in-

tended as future work. 
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A Complementary information: polymer compo-

site materials reinforced with fibres 

A.1 Global demand of polymer composite materials reinforced with fi-

bres 

Composite materials based on fibre-reinforced polymers are intended for com-

mercial applications in many fields of engineering and those who belong to structural 

application areas are in current focus. Different industries such as: aerospace, military, 

automotive, marine, wind turbines, infrastructure (e.g., as construction of bridges or 

pillars), optics (e.g., as high precision plates [221,222]) and sporting goods, widely de-

mand fibre reinforced polymers. Glass fibre reinforced polymers (GFRP) and carbon 

fibre reinforced polymers (CFRP) are highly demanded as base fibres materials. Glass 

fibre reinforced polymers are already standard products today. The transportation and 

construction industries continue to be the main customers for GFRP components, each 

with about a third of the total production volume. In some cases, GFRP components 

are already firmly established as building materials, especially in chemical plants due 

to the high resistant to corrosive substances [32,223]. On the other hand, the annual 

demand of carbon fibre reinforced composites components is mainly within commercial 

aviation (including defence sector) with 55,31 kt/a (being kt/a: kiloton per annum) fol-

lowed by automotive sector as the second largest segment with 37,13 kt/a (Figure A.1). 

The annual worldwide total demand of CFRP components was ca. 154,7 kt/a , while 

sales were approximately US$ 23,15 Mrd (being Mrd: thousands of millions) in 2018. 

In particular, the cost per kilogram of CFRP is highly conditioned upon the high quality 

and safety requirements as well as the subsequent certification and qualification costs 

in the different application areas. In contrast to the aerospace industry, standard auto-

mobile manufacturing is significantly sensitive to large-scale material processing tech-

nology, and consequently its production costs [32,224]. Between the years 2010 and 

2012, only a few CFRP manufacturing methods were able to guarantee relatively large 

series with the expected quality, despite the fact that the total manufacturing time of 

the part was still high, mainly due to a low-level of automation of the process.  
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Figure A.1.  Global demand of CFRP components per main sector (2018) [224] 

Recent process analyses, in turn, showed that large batch production series al-

lows significant cost reductions in the CFRP process chain. For example, in 2018 the 

manufacturing cost per kilogram of CFRP components was ca. 80 EUR for a batch of 

5,000 articles per year; if the batch rises to 75,000 items per year, the costs could be 

reduced to 65 EUR. Furthermore, if it is possible to combine this effect with the pro-

cessing of lower cost raw materials through new production automated technologies 

(for example, using RTM instead of traditional autoclave-based processes) and the 

reduction of finishing processes (such as off-cuts), the costs for the medium-scale 

manufacturing of 1 kilogram of CFRP components could be approximately reduced to 

18 EUR per kg according to recent estimations [225,226]. 

 

Figure A.2.  Global demand of CFRP from 2010 to 2023 (estimated) [227] 
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Thus, an accelerated growth on the demand for composite materials is expected 

in the upcoming years, partly due to privatizations in the aerospace sector [224] and 

the development of high volume automated manufacturing techniques in the automo-

tive sector, but which still can guarantee the expected quality and safety (e. g. RTM 

processes developed by AUDI AG and Voith Composites [228]). The CFRP compo-

nents demand prognosis is presented on Figure A.2. Considering the historic demand 

along the years, an average sustained increase of almost 13% annually is expected 

until 2023, reaching a value of nearly 200 kt/a . Moreover, particularly the annual de-

mand of CFRP components in the automotive sector is expected to reach the value of 

72 kt/a, surpassing the aerospace sector by 7 kt/a  in 2022 [223]. 
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B Base material properties 

B.1 Ultra-lightweight 3D-honeycomb cores 

B.1.1 Elastic properties  

The woven [0/90] ° carbon fibre fabric layer is approximated as a 50-50 laminate, 

with fibres a [0] ° and [90] ° and disregarding the waviness, due to the small tow size 

(T300-3k) and the final CFRP thickness (≈ 0.65 mm). Three woven layers are laid-up. 

• Base laminate features 

Single layer 

thickness 

Total thickness 

(t) 
Textile weight Fibre density 

Fibre volume 

content 
Fibre orientation  

[mm] [mm] [kg/m²] [kg/m³] Eq. (2.1) [°] 

0.10833333 0.65000000 0.198 1800 0.50769231 0 – 90  

• Fibre and matrix elastic properties 

𝐸𝑓∥ 𝐸𝑓⊥ 𝐺𝑓∥⊥ 𝜈𝑓∥⊥ 𝐸𝑚 𝜈𝑚 

[MPa] [MPa] [MPa] [-] [MPa] [-] 

Toray T300  [34] [34] [34] Epoxy DGBA  

230000 13000 50000 0.23 2650 0.3 

• UD-layer laminate elastic properties 

𝐸∥ 𝐸⊥ 𝐺∥⊥ 𝜈∥⊥ 𝜈⊥∥ 

[MPa] [MPa] [MPa] [-] [-] 

Eq. (2.6) Eq. (2.13) Eq. (2.15) Eq. (2.16) Eq. (2.17) 

118073.85 6747.88 3556.77 0.2645 0.0151 

• Transformed stiffnesses 

 Q11 Q22 Q33 Q12 Q13 Q23 

 Eq. (2.24) Eq. (2.26) Eq. (2.29) Eq. (2.25) Eq. (2.27) Eq. (2.28) 

 118547.6864 6774.963015 3556.767196 1791.717142 0 0 

 6774.963015 118547.6864 3556.767196 1791.717142 1.3049E-13 6.7164E-12 

 118547.6864 6774.963015 3556.767196 1791.717142 0 0 

 6774.963015 118547.6864 3556.767196 1791.717142 1.3049E-13 6.71641E-12 

 118547.6864 6774.963015 3556.767196 1791.717142 0 0 

 6774.963015 118547.6864 3556.767196 1791.717142 1.3049E-13 6.71641E-12 

Σ𝑄𝑖𝑖. 𝑡𝑖 = 40729.86 40729.86 2311.90 1164.62 0.00 0.00 
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• Stiffness matrix [A] 

40729.86 1164.616142 4.24112E-14 
1164.616142 40729.86 2.18283E-12 

4.24112E-14 2.18283E-12 2311.898677 

• Compliance matrix [a] = [A-1] 

2.4572E-05 -7.02607E-07 2.1261E-22 

-7.026E-07 2.45721E-05 -2.319E-20 

2.1261E-22 -2.31874E-20 0.00043254 

• Engineering constants 

Solved for this work with Figure 4.7 as coordinate reference: 

𝐸1𝑠  = 62610.09295 [MPa] (Eq. 2.44) 

𝐸3𝑠   = 62610.09295 [MPa] (Eq. 2.45) 

𝐺13𝑠   = 3556.767196 [MPa] (Eq. 2.46) 

𝜐13𝑠   = 0.028593668 [-] (Eq. 2.47) 

𝜐31𝑠    = 0.028593668 [-] (Eq. 2.48) 

B.1.2 Strength  

• Budianski´s model (Eq. 2.56) [57] 

Sigma_cs Gec Gm Em 𝜐𝑚 Fv Phi_nom Strain_yc Phi_nom Sigma_cs 

[MPa] [MPa] [MPa] [MPa] 
 

[%] [°] 
 

[°] [MPa] 

405.543 2070.97 1019.23 2650 0.300 0.508 4.000 0.017 2.000 678.266 

        
3.000 507.592 

        
4.000 405.543 

        
5.000 337.659 

• Composite compressive strength: 

Sigma_cs_avg 

(𝜎3𝑠
− = 𝜎1𝑠

− ) 

[Mpa] 

482.265 

 

• Composite shear strength: 
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The shear strength of the UD-layer of T300/epoxy is presented as 𝑅⊥∥= 75 MPa 

in Ref. [34]. Since the base material is based on woven T300 layers, the shear strength 

may be influenced by the cross-fibres, as in weft direction. The shear strength is pre-

estimated as 𝜏13𝑠 = 110 MPa, as presented in [139] for analogous woven T300/epoxy 

CFRP composite materials. 

 

B.2 Ultra-lightweight lattice-cores made from CFRP rods 

B.2.1 Elastic properties. Skin I (tf = 0.8 mm) 

The twill 2 x 2 [0/90] ° carbon fibre fabric layer is approximated as a 50-50 lami-

nate, with fibres a [0] ° and [90] ° and disregarding its waviness, due to the small tow 

size (T300-3k) and final CFRP thickness (≈ 0.80 mm). Four woven layers are laid-up. 

• Base laminate features 

Single layer 

thickness 

Total thickness 

(t) 
Textile weight Fibre density 

Fibre volume 

content 
Fibre orientation  

[mm] [mm] [kg/m²] [kg/m³] Eq. (2.1) [°] 

0.10000000 0.80000000 0.198 1800 0.55000000 0 – 90  

• Fibre and matrix elastic properties 

𝐸𝑓∥ 𝐸𝑓⊥ 𝐺𝑓∥⊥ 𝜈𝑓∥⊥ 𝐸𝑚 𝜈𝑚 

[MPa] [MPa] [MPa] [-] [MPa] [-] 

Toray T300  [34] [34] [34] Epoxy type L  

230000 13000 50000 0.23 2650 0.3 

 

• UD-layer laminate elastic properties 

𝐸∥ 𝐸⊥ 𝐺∥⊥ 𝜈∥⊥ 𝜈⊥∥ 

[MPa] [MPa] [MPa] [-] [-] 

Eq. (2.6) Eq. (2.13) Eq. (2.15) Eq. (2.16) Eq. (2.17) 

127692.50 7444.25 4061.70 0.2615 0.0152 

 

• Transformed stiffnesses 
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 Q11 Q22 Q33 Q12 Q13 Q23 

 Eq. (2.24) Eq. (2.26) Eq. (2.29) Eq. (2.25) Eq. (2.27) Eq. (2.28) 

 128203.592 7474.044602 4061.701775 1954.46266 0 0 

 7474.044602 128203.592 4061.701775 1954.46266 1.595E-13 7.23608E-12 

 128203.592 7474.044602 4061.701775 1954.46266 0 0 

 7474.044602 128203.592 4061.701775 1954.46266 1.595E-13 7.23608E-12 

 7474.044602 128203.592 4061.701775 1954.46266 1.595E-13 7.23608E-12 

 128203.592 7474.044602 4061.701775 1954.46266 0 0 

 7474.044602 128203.592 4061.701775 1954.46266 1.595E-13 7.23608E-12 

 128203.592 7474.044602 4061.701775 1954.46266 0 0 

Σ𝑄𝑖𝑖 . 𝑡𝑖 = 54271.05 54271.05 3249.36 1563.57 0.00 0.00 

• Stiffness matrix [A] 

54271.0546 1563.570131 6.3801E-14 

1563.57013 54271.05 2.8944E-12 

6.3801E-14 2.89443E-12 3249.36142 

• Compliance matrix [a] = [A-1] 

1.8441E-05 -5.31302E-07 1.1117E-22 

-5.313E-07 1.84413E-05 -1.642E-20 

1.1117E-22 -1.64165E-20 0.00030775 

• Engineering constants 

Solved for this work with Figure 5.1 as coordinate reference: 

𝐸1𝑠  = 67782.50947 [MPa] (Eq. 2.44) 

𝐸3𝑠   = 67782.50947 [MPa] (Eq. 2.45) 

𝐺13𝑠   = 4061.701775 [MPa] (Eq. 2.46) 

𝜐13𝑠  = 0.028810388 [-] (Eq. 2.47) 

𝜐31𝑠   = 0.028810388 [-] (Eq. 2.48) 

B.2.2 Elastic properties. Skin II (tf = 1.21 mm) 

The twill 2 x 2 [0/90] ° carbon fibre fabric layer is approximated as a 50-50 lami-

nate, with fibres a [0] ° and [90] ° and disregarding its waviness, due to the small tow 

size (T300-3k) and final CFRP thickness (≈ 1.21 mm). Six woven layers are laid-up. 

• Base laminate features 

Single layer 

thickness 

Total thickness 

(t) 
Textile weight Fibre density 

Fibre volume 

content 
Fibre orientation  

[mm] [mm] [kg/m²] [kg/m³] Eq. (2.1) [°] 

0.10083333 1.21000000 0.198 1800 0.54545455 0 – 90  
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• Fibre and matrix elastic properties 

𝐸𝑓∥ 𝐸𝑓⊥ 𝐺𝑓∥⊥ 𝜈𝑓∥⊥ 𝐸𝑚 𝜈𝑚 

[MPa] [MPa] [MPa] [-] [MPa] [-] 

Toray T300  [34] [34] [34] Epoxy type L  

230000 13000 50000 0.23 2650 0.3 

• UD-layer laminate elastic properties 

𝐸∥ 𝐸⊥ 𝐺∥⊥ 𝜈∥⊥ 𝜈⊥∥ 

[MPa] [MPa] [MPa] [-] [-] 

Eq. (2.6) Eq. (2.13) Eq. (2.15) Eq. (2.16) Eq. (2.17) 

126659.09 7364.65 4002.27 0.2618 0.0152 

 

• Transformed stiffnesses 

 Q11 Q22 Q33 Q12 Q13 Q23 

 Eq. (2.24) Eq. (2.26) Eq. (2.29) Eq. (2.25) Eq. (2.27) Eq. (2.28) 

 127165.9491 7394.126482 4002.266098 1935.91675 0 0 

 7394.126482 127165.9491 4002.266098 1935.91675 1.5598E-13 7.18093E-12 

 127165.9491 7394.126482 4002.266098 1935.91675 0 0 

 7394.126482 127165.9491 4002.266098 1935.91675 1.5598E-13 7.18093E-12 

 127165.9491 7394.126482 4002.266098 1935.91675 0 0 

 7394.126482 127165.9491 4002.266098 1935.91675 1.5598E-13 7.18093E-12 

 7394.126482 127165.9491 4002.266098 1935.91675 1.5598E-13 7.18093E-12 

 127165.9491 7394.126482 4002.266098 1935.91675 0 0 

 7394.126482 127165.9491 4002.266098 1935.91675 1.5598E-13 7.18093E-12 

 127165.9491 7394.126482 4002.266098 1935.91675 0 0 

 7394.126482 127165.9491 4002.266098 1935.91675 1.5598E-13 7.18093E-12 

 127165.9491 7394.126482 4002.266098 1935.91675 0 0 

Σ𝑄𝑖𝑖 . 𝑡𝑖 = 81408.85 81408.85 4842.74 2342.46 0.00 0.00 

 

• Stiffness matrix [A] 

81408.85 2342.45927 9.4369E-14 

2342.45927 81408.85 4.3445E-12 

9.4369E-14 4.34446E-12 4842.74198 

• Compliance matrix [a] = [A-1] 

1.2294E-05 -3.53744E-07 7.7781E-23 

-3.537E-07 1.22939E-05 -1.102E-20 

7.7781E-23 -1.1022E-20 0.00020649 

• Engineering constants 
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Solved for this work using Figure 5.1 as coordinate reference: 

𝐸1𝑠  = 67224.3337 [MPa] (Eq. 2.44) 

𝐸3𝑠   = 67224.3337 [MPa] (Eq. 2.45) 

𝐺13𝑠   = 4002.266098 [MPa] (Eq. 2.46) 

𝜐13𝑠   = 0.028774014 [-] (Eq. 2.47) 

𝜐31𝑠    = 0.028774014 [-] (Eq. 2.48) 

Observation to “Skin I” and “Skin II”  

Since the elastic properties are very similar for skins I and II of average thick-

nesses 0.8 mm and 1.21 mm, respectively, the characteristics of a skin of 55% of fibre 

volume content will be considered to ease the calculations. 

B.2.3 Strength 

• Budianski´s model (Eq. 2.56) [57] 

Sigma_cs Gec Gm Em 𝜐𝑚 Fv Phi_nom Strain_yc Phi_nom Sigma_cs 

[MPa] [MPa] [MPa] [MPa] 
 

[%] [°] 
 

[°] [MPa] 

369.287 2264.957 1019.231 2650.000 0.300 0.550 5.000 0.017 2.000 741.799 

   
  

   
3.000 555.138 

        
4.000 443.530 

        
5.000 369.287 

• Composite compressive strength: 

Sigma_cs_avg 

(𝜎3𝑠
− = 𝜎1𝑠

− ) 

[Mpa] 

527.439 

 

• Composite shear strength: 

The shear strength of the UD-layer of T300/epoxy is presented as 𝑅⊥∥= 75 MPa 

in Ref. [34]. Since the base material is based on woven T300 layers, the shear strength 

may be influenced by the cross-fibres, as in weft direction. The shear strength is pre-

estimated as 𝜏13𝑠 = 110 MPa, as presented in [139] for similar woven T300/epoxy 

CFRP composite materials. 
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C  Core and skin densities 

C.1 Ultra-lightweight 3D-honeycomb cores 

C.1.1 Composite plate 

The theoretical density expected for the composite plate made from three layers 

of plain woven [0/90] ° T300-3k carbon fibres fabrics and epoxy resin as the polymeric 

matrix, is presented below. The fibre volume content (𝜑𝑓) and the composite E-moduli 

were calculated using the results from Annex B. 

Plain woven [0-90] °  

Plate_thick n_layers Sup_dens Fibre_dens Matrix_dens 𝜑𝑓 E_max  Comp_dens 

[mm] [-] [g/m^2] [g/cm^3] [g/cm^3] [%] [MPa] [g/cm^3] 

0.6000 3 198.0000 1.8000 1.1400 55.0000 67782 1.5030 

0.6500 3 198.0000 1.8000 1.1400 50.7692 62610 1.4750 

0.7000 3 198.0000 1.8000 1.1400 47.1428 58214 1.4510 

The experimental densities measured in the laboratory are in range ≈ [1.30 – 

1.35] gcm-3, and the plate thicknesses are of ≈ [0.60 – 0.70] mm (the average is taken 

after three measurements).  

C.1.2 Core densities 

The core densities for the square honeycomb cores were estimated theoretically 

and validated by laboratory measurements as follows. 

• Core design 1: 

 

Comp_dens Core_height Core_length Core_width Core_vol 

[kg/m^3] [mm] [mm] [mm] [m^3] 

1300 25.4 100 100 0.000254 

Sheet_thick Sheet_vol Sheet_area Weight_sheet Sheet_number 

[mm] [m^3] [mm^2] [kg] [-] 

0.65 9.2625E-07 1425 0.001204125 10 

Core_weight_theory Core_dens_theory Core_weight_lab. Core_dens_lab. Core_rel_dens 

[kg] [kg/m^3] [kg] [kg/m^3] [-] 

0.01204125 47.40649 0.0121 47.63779 0.03664 
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• Core design 2: 

 

Comp_dens Core_height Core_length Core_width Core_vol 

[kg/m^3] [mm] [mm] [mm] [m^3] 

1300 25.4 100 100 0.000254 

Sheet_thick Sheet_vol Sheet_area Weight_sheet Sheet_number 

[mm] [m^3] [mm^2] [kg] [-] 

0.65 9,334E-07 1436 0.00121342 10 

Core_weight_theory Core_dens_theory Core_weight_lab. Core_dens_lab. Core_rel_dens 

[kg] [kg/m^3] [kg] [kg/m^3] [-] 
0.0121342 47.77244 0.0117 46.06299 0.03543 

• Core design 3: 

 

Comp_density Core_height Core_length Core_width Core_vol 

[kg/m^3] [mm] [mm] [mm] [m^3] 

1300 25.4 100 100 0.000254 

Sheet_thick Sheet_vol Sheet_area Weight_sheet Sheet_number 

[mm] [m^3] [mm^2] [kg] [-] 

0.65 8.9895E-07 1383 0.001168635 10 

Core_weight_theory Core_dens_theory Core_weight_lab. Core_dens_lab. Core_rel_dens 

[kg] [kg/m^3] [kg] [kg/m^3] [-] 
0.01168635 46.00925 0.01185 46.65354 0.03588 

• Core reference: 

 

Comp_density Core_height Core_length Core_width Core_vol 

[kg/m^3] [mm] [mm] [mm] [m^3] 

1350 25.4 100 100 0.000254 

Sheet_thick Sheet_vol Sheet_area Weight_sheet Sheet_number 

[mm] [m^3] [mm^2] [kg] [-] 

0.7 0.000001778 2540 0.0024003 4 

Core_weight_theory Core_dens_theory Core_weight_lab. Core_dens_lab. Core_rel_dens 

[kg] [kg/m^3] [kg] [kg/m^3] [-] 

0.0096012 37.8 0.009821 38.66535433 0.0286 
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C.2 Ultra-lightweight lattice-cores made from CFRP rods 

C.2.1 Composite skins I (𝑡𝑓 = 0.8 mm) 

The theoretical density expected for the composite plate made from four layers 

of twill woven 2 x 2 [0/90] ° T300-3k carbon fibres fabrics and epoxy resin as the poly-

meric matrix, is presented below. The fibre volume content (𝜑𝑓) and the composite E-

moduli were calculated using the results as in Annex B. 

Twill woven [0-90] °  

Plate_thick n_layers Sup_dens Fibre_dens Matrix_dens 𝜑𝑓 E_max  Comp_dens 

[mm] [-] [g/m^2] [g/cm^3] [g/cm^3] [%] [MPa] [g/cm^3] 

0.7500 4 198.0000 1.8000 1.1000 58.6667 72308 1.5016 

0.8000 4 198.0000 1.8000 1.1000 55.0000 67782 1.4850 

0.8500 4 198.0000 1.8000 1.1000 51.7647 63822 1.4623 

The experimental densities measured in the laboratory are in range ≈ [1.416 – 

1.430] gcm-3, and the plate thicknesses are of ≈ [0.75 – 0.85] mm (the average value 

is taken after three measurements).  

C.2.2 Composite skins II (𝑡𝑓 = 1.21 mm) 

The theoretical density expected for the composite plate made from six layers of 

twill woven 2 x 2 [0/90] ° T300-3k carbon fibres fabrics and epoxy resin as the polymeric 

matrix, is presented below. The fibre volume content (𝜑𝑓) and the composite E-moduli 

were calculated using the results as in Annex B. 

Twill woven [0-90] °  

Plate_thick n_layers Sup_dens Fibre_dens Matrix_dens 𝜑𝑓 E_max  Comp_dens 

[mm] [-] [g/m^2] [g/cm^3] [g/cm^3] [%] [MPa] [g/cm^3] 

1.18 6 198.0000 1.8000 1.1000 55.9322 68929 1.4915 

1.213 6 198.0000 1.8000 1.1000 54.3971 67042 1.4807 

1.26 6 198.0000 1.8000 1.1000 52.3801 64574 1.4667 

The experimental densities measured in the laboratory are in range ≈ [1.386 – 

1.479] gcm-3, and the plate thicknesses are of ≈ [1.18 – 1.26] mm (the average value 

is taken after three measurements).  
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C.2.3 Core densities 

The core densities for the lattice-based cores are estimated theoretically from the 

unit cell as follows.  

Cell_width Cell_length Cell_height Cell_area Cell_vol   

[mm] [mm] [mm] [mm^2] [mm^3]   

17.960479 17.960479 25.4 322.578815 8193.5019   

Rod_dens Rod_diam Rod_angle Rod_length Rod_vol Cell_mass Core_dens 

[g/cm^3] [mm] [°] [mm] [mm^3] [g] [kg/mm^3] 

1.55 0.5 45 35.921090 7.053106 0.04372926 5.33706569 

1.55 1 45 35.921090 28.212424 0.17491703 21.3482627 

1.55 1.5 45 35.921090 63.477955 0.39356332 48.0335912 

 The laboratory results are presented as follows (the average value is taken after 

three measurements) 

Rod_diam Core_weight_avg Core_vol_control Core_dens 

[mm] [g] [mm^3] [kg/mm^3] 

0.5 0.93 107315 8.666076504 

1 2.46 107315 22.92317011 

1.5 5.34 107315 49.76005218 
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D Complementary analyses for Chapter 5 

D.1 Loads over mid-plane node 

The resultant force over the mid-plane node (Figure 5.11) shall be also analysed 

for having a first insight of the loads driven by the compression loads and the shear 

loads.  

D.1.1 Comparison between two kind of mid-plane node shapes  

The array of rods for simulating the mid-plane node that emulates the glue con-

tact among the rods (Figure 5.12) could be seen as a cross, or as a cross circum-

scribed in a square array of rods (Figure D.1). The properties of the rods base materials 

are shown in Table 5.1. The studies are carried out by linear and non-linear FE simu-

lations using FEMAP™ 10.3 with NX™ Nastran®. 

(a) Array of rods as a cross (b) Array of rods as a cross circumscribed 

  

Figure D.1. Simulated array of rods for mid-plane node studies   

D.1.1.1 Compression loading 

The model of Figure 5.8 and Figure 5.11 are taken as basis for the simulations. 

Total vertical loads of 1 kN and 10 kN are applied on the top nodes. The top nodes are 

fixed, although they can only displace over z-direction. The boundary conditions on the 

bottom nodes are established as fully clamped. The end nodes of the array of rods on 

the mid-plane (i.e., the magenta coloured rods on Figure D.1) are merged to the ap-

propriate nodes of the support rods (i.e., the cyan coloured rods on Figure D.1) on the 

mid-plane. As a first approach, the rod´s diameter of the mid-plane node 𝑑𝑚 is set as 
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0.5 mm, and the simulations explore through the proposed rod diameters as base ma-

terials for the lattices. 

Table D.1. Results from FE simulations for load analyses upon the mid-plane node 

due to compressive loads and the effect of the overall unit cell behaviour regarding the 

shape selected. 

Rod diameter d = 0.5 mm 

Simulation type Variable Units 
Mid-plane node type 

  
Linear Max node displacement in z  [mm] 0.810165 0.811709 

Eigenvalue Load failure factor (for a load 1 kN) [--] 0.060933 0.060955 

Non-linear Load failure factor (for a load 1 kN) [--] 0.060625 0.060625 

Linear 
Max/min axial load (mid-plane node) [N] 1.9271 0.03351 0.01278 

Max/min shear load (mid-plane node) [N] 4.454 0.85 0.3327 

Non-linear failure 
step 

Max/min axial load (mid-plane node) [N] 0.2866 0.0063 0.01365 

Max/min shear load (mid-plane node) [N] 0.2915 0.1203 2.206 

Rod diameter d = 1 mm 

Simulation type Variable Units 
Mid-plane node type 

  
Linear Max node displacement in z  [mm] 2.019831 2.0232 

Eigenvalue Load failure factor (for a load 1 kN) [--] 0.0905 0.09005 

Non-linear Load failure factor (for a load 1 kN) [--] 0.0890625 0.08656 

Linear 
Max/min axial load (mid-plane node) [N] 6.9069 0.2726 0.2544 

Max/min shear load (mid-plane node) [N] 26.807 4.135 4.2274 

Non-linear failure 
step 

Max/min axial load (mid-plane node) [N] 1.0751 0.02004 0.1211 

Max/min shear load (mid-plane node) [N] 7.1054 0.8919 0.6368 

Rod diameter d = 1.5 mm 

Simulation type Variable Units 
Mid-plane node type 

  
Linear Max node displacement in z  [mm] 0.883 0.898 

Eigenvalue Load failure factor (for a load 10 kN) [--] 0.402604 0.3483 

Non-linear Load failure factor (for a load 10 kN) [--] 0.3865 0.342813 

Linear 
Max/min axial load (mid-plane node) [N] 2.1633 0.3188 0.077 

Max/min shear load (mid-plane node) [N] 11.661 2.0714 3.167 

Non-linear failure 
step 

Max/min axial load (mid-plane node) [N] 0.6991 0.4636 2.77051 

Max/min shear load (mid-plane node) [N] 20.745 1.8732 9.996 

 No substantial differences are observed between the results obtained either by 

an array of rods resembling a cross or a cross circumscribed (Table D.1). The linear 

simulations were of a larger value than the non-linear because no instability was con-

sidered. It is important to notice, that the unit cell material shall fail before reaching the 



   290                                  D. Complementary analyses for Chapter 5 

 

maximum simulated load and the values showed by the mid-plane node are assumed 

to be smaller. However, the non-linear analyses give the first approximation on the 

mid-plane node loading at the failure step.  

D.1.1.2 Shear loading 

The model of Figure 5.19 and Figure 5.11 are taken as basis for the simulations.  

Table D.2. Results from FE simulations for load analyses upon the mid-plane node 

due to shear loads and the effect of the overall unit cell behaviour regarding the shape 

selected. 

Rod diameter d = 0.5 mm 

Simulation type Variable Units 
Mid-plane node type 

  
Linear Max node displacement (𝛼 = 45°) [mm] 1.61974 1.6228 

Eigenvalue Load failure factor (for a load 1 kN) [--] 0.0514487 0.0463 

Non-linear Load failure factor (for a load 1 kN) [--] 0.0515625 0.04625 

Linear 
Max/min axial load (mid-plane node) [N] 2.66 0.291 0.031 

Max/min shear load (mid-plane node) [N] 2.14 1.44 2.94 

Non-linear failure 
step 

Max/min axial load (mid-plane node) [N] 0.15 0.039 0.01225 

Max/min shear load (mid-plane node) [N] 0.8081 0.1235 0.1584 

Rod diameter d = 1 mm 

Simulation type Variable Units 
Mid-plane node type 

  
Linear Max node displacement (𝛼 = 45°) [mm] 4.0367 4.043117 

Eigenvalue Load failure factor (for a load 1 kN) [--] 0.0677 0.0647 

Non-linear Load failure factor (for a load 1 kN) [--] 0.0628 0.05968 

Linear 
Max/min axial load (mid-plane node) [N] 26.461 6.21 2.3528 

Max/min shear load (mid-plane node) [N] 12.831 8.31 11.973 

Non-linear failure 
step 

Max/min axial load (mid-plane node) [N] 5.036 1.06 1.0328 

Max/min shear load (mid-plane node) [N] 11.09 2.3 3.01 

Rod diameter d = 1.5 mm 

Simulation type Variable Units 
Mid-plane node type 

  
Linear Max node displacement (𝛼 = 45°) [mm] 1.791568 1.792 

Eigenvalue Load failure factor (for a load 10 kN) [--] 0.2955 0.2913 

Non-linear Load failure factor (for a load 10 kN) [--] 0.2578 0.253125 

Linear 
Max/min axial load (mid-plane node) [N] 15.345 6.3626 3.8169 

Max/min shear load (mid-plane node) [N] 7.65 7.63 9.5629 

Non-linear failure 
step 

Max/min axial load (mid-plane node) [N] 17.747 5.1082 11.146 

Max/min shear load (mid-plane node) [N] 14.056 5.25 16.151 
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A total horizontal load of 1 kN is applied on the top nodes of the unit cell. The 

top nodes are constrained just to move on the horizontal direction parallel to vector 𝛿 

and oriented by 𝛼. The bottom nodes are set as fully clamped as constraints. The end 

nodes of the array of rods on the mid-plane are merged to the correspondent nodes of 

the support rods on the mid-plane. The rod´s diameter of the mid-plane node 𝑑𝑚 is 

assumed as 0.5 mm. and the behaviour of the proposed rod diameters is presented. 

Table D.2. shows no significant differences between the results attained either 

by a mid-plane node as an array of rods resembling a cross or a cross circumscribed 

for the shear loading case. The unit cell material might fail before reaching the maxi-

mum applied load.  Nevertheless, the non-linear analyses provided a first approxima-

tion on the mid-plane node loading at the instability step. 

D.2 Variation of rod orientation according to angle 𝝎 and its effect on 

Euler buckling behaviour by compressive loads 

An example of the variation of the CFRP rods´ orientation as a function of the 

angle 𝜔 is proposed in this section (Figure D.2). The following assumptions are estab-

lished for simplifying the studies: the range of interest is limited to [2.5 - 63] °, a maxi-

mum cell height of 25.4 mm, a constant cell area as the proposed 𝐴𝑐𝑒𝑙𝑙 in this work. 

Recalling equations Eq. (5.2) and Eq. (5.23), and applying the above assumptions, 

now the equations take the form of Eq. (D.1) and Eq. (D.2).  

(a) Unit cell model (b) 𝜔 = 45° (c)  𝜔 > 45° (d) Max. 𝜔 ≈ 63 ° 

 

   

Figure D.2. Different rod orientations according to 𝜔 variation within a unit cell: unit 

cell model and front views of the principal diagonals 

 



   292                                  D. Complementary analyses for Chapter 5 

 

𝑙 =  
𝐻2

2 cos𝜔
 (D.1) 

𝜎𝑐𝐵 =
𝐸𝑟𝑜𝑑1𝑠𝜋

3𝑑4 cos2𝜔

4𝑘2𝐻2
2 sin𝜔 𝐴𝑐𝑒𝑙𝑙

[sin2𝜔 +
3

4
(
2𝑑 cos𝜔

𝐻2
)
2

cos2 𝜔
⏟              

≈0

]                        (D.2) 

Where: 

 d and 𝜔 are the variables 

 𝐴𝑐𝑒𝑙𝑙 = 322.58 mm2 

 𝑘 = 0.7 

 𝐻2 = 25.4 mm 

 𝐸𝑟𝑜𝑑1𝑠 = 115000 MPa   

            

Figure D.3. Graphic 3D representation of Eq. D.2 employing d and 𝜔 as variables for 

the particular case analysed 

 The failure surface obtained while employing Eq. D.2 and above parameters is 

given in Figure D.3. For the particular case analysed, the maximum compressive 

strength for the unit cell while evaluating Euler buckling are obtained when 𝜔 = 45°. 

When the mid-node is above the half of the cell, the critical rod length is at the bottom 

half, and when the mid-node is below the half of the cell, the critical rod length is at the 
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above half. At 45 °, the rods encounter each other at the mid-plane of the cell, being 

the suitable angle for bearing the compressive loads for the particular case analysed. 

D.3 Variation of rod orientation according to angle 𝜶 and its effect on 

Euler buckling behaviour by shear loads 

A variation of the CFRP rods´ orientation as a function of the angle 𝛼 is proposed 

in this section (Figure D.4). The following assumptions are established for simplifying 

the studies: the range of interest is limited to [-45 – 45] °, 𝜔 = 45°, a maximum cell 

height of 25.4 mm, a constant cell area as the proposed 𝐴𝑐𝑒𝑙𝑙 in this work. Recalling 

equations Eq. (D.1) and Eq. (5.39), and applying the above assumptions, now the latter 

equation takes the form of Eq. (D.3).  

(a) Unit cell model (b) 𝛼 = −45° (c)  𝛼 = 0° (d) 𝛼 = 45 ° 

 

   

Figure D.4. Different rod orientations according to 𝛼 variation within a unit cell: unit 

cell model and top views 

𝜏𝑐𝐵 =
𝐸𝑟𝑜𝑑1𝑠𝜋

3𝑑4 cos𝜔

8𝑘2𝐻2
2 cos 𝛼 𝐴𝑐𝑒𝑙𝑙

[cos2𝜔 +
3

4
(
2𝑑 cos𝜔

𝐻2
)
2

sin2𝜔
⏟            

≈ 0

] (D.3) 

Where: 

 d and 𝜔 are the variables 

 𝐴𝑐𝑒𝑙𝑙 = 322.58 mm2 

 𝑘 = 0.7 

 𝜔 = 45 ° 

 𝐻2 = 25.4 mm 

 𝐸𝑟𝑜𝑑1𝑠 = 115000 MPa   
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Figure D.5. Graphic 3D representation of Eq. D.3 employing d and 𝛼 as variables for 

the particular case analysed 

The failure surface obtained while employing Eq. (D.3) and above parameters 

is given in Figure D.5. The maximum shear strength for the unit cell while evaluating 

Euler buckling is obtained when 𝛼 = 45°, for the case analysed.  

At 𝛼 = 45°, the loading case is symmetrical, and the loads are ideally equally 

distributed among the four rods. When 𝛼 > 45°, the rods on the first and fourth quad-

rant bear most of the loads as the shear load is axially adequate oriented. The rods on 

the second and third quadrant are axially less loaded. When 𝛼 = 90°, only two rods 

are loaded parallel in projection to the shear acting load, and the other two bear mostly 

shear and bending load (thus, very weak), but no axial load. This is the main reason 

for limiting the analysed problem to 𝛼 = ± 45°. Hence, the suitable orientation for the 

analysed case is 𝛼 = 45°, because the buckling critical load is higher as the loads are 

better borne and thus, the shear strength of the cell is higher.  

The above statements are also supported by FE non-linear analyses, by varying 

the vector load P according to angle 𝛼 (Figure D.4) and observing the buckling failure 

load P_Eu_FEM (Table D.3 and Figure D.6). Rod diameter 1 mm is taken as example 
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for the studies and Figure D.1.5 acts as model for the simulations. A total load P of 1 

kN is applied on top nodes (i.e., 250 N per rod), while bottom nodes remain con-

strained. The maximum buckling strength by shear loading is achieved by an angle 

𝛼 = 45° between rods and the loading vector, for the particular case analysed. 

Table D.3. Results from FE simulations for shear load analyses  

Rod_diam P P_x P_y alpha_rod P_Eu_FEM Tau_max 

[mm] [N] [N] [N] [°] [N] [MPa] 

1 1000 250 0 45 662.296 2.05312171 

  246.201938 43.4120444 35 556.43 1.72515037 

  226.576947 105.654565 25 498.662 1.546047 

  204.788011 143.394109 10 475.864 1.4753643 

  176.776695 176.776695 0 468.648 1.45299188 

  143.394109 204.788011 -10 475.864 1.4753643 

  105.654565 226.576947 -25 498.662 1.546047 

  43.4120444 246.201938 -35 556.426 1.72513797 

  0 250 -45 662.296 2.05337633 

 

Figure D.6. Graphic representation of core shear strength varying with the load vec-

tor orientation according to angle 𝛼 for a rod diameter of 1 mm 

D.3.1 Resultant shear loads over the mid-plane node due to external compressive 

loads 

In this section, shear resultant loads over the mid-plane node as consequence of 

the external applied forces is addressed and resumed in Figure D.7. 
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(a) Rod diameter 0.5 mm (compression) (d) Rod diameter 0.5 mm (shear) 

  

(b) Rod diameter 1 mm (compression) (e) Rod diameter 1 mm (shear) 

  

(c) Rod diameter 1.5 mm (compression) (f) Rod diameter 1.5 mm (shear) 

  

 

Figure D.7. Resultant shear loads for studied rod diameters at the failure step for: 

(left) compressive loading case, and (right) shear loading case 
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The adhesive joint strength is usually studied applying shear stresses or tensile 

(peeling) stresses. The rigidity (EI) of the mid-plane node is explored by varying the 

diameter of the array of rods, for each analysed rod case. The mid-plane node is sim-

ulated as Figure D.1.a and non-linear analyses provides the shear loads at the failure 

step. The cross-like array of rods is numbered as: top rods as 1 and 2; while the bottom 

rods as 3 and 4. 

D.3.1.1 Compressive loading 

The load is applied following the model of Figure 5.8. Total vertical loads of 1 

kN and 10 kN are applied on the top nodes. The top nodes can only displace over z-

direction, while the bottom nodes are set as fully clamped. The shear loads at the 

failure step from the non-linear simulations are presented in Figure D.7 (left) for the 

analysed rod cases. As the stiffness of the mid-plane node increases, the shear 

loads on the node also increase. The same effect is observed when increasing the 

diameter of the rods of the unit cell, which in a certain way, also stiffens the mid-

plane. The predicted loads on the node before failure are relatively low (< 20 N). For 

example, for the case of 1.5 mm (Figure D.7.c), a minimum bonding area of ≈ 1 mm2 

is predicted to avoid failure by debonding (considering an adhesive strength of 20 

MPa) for a high rigidity mid-plane nod 

D.3.1.2 Shear loading 

Figure 5.19 is taken as model for the simulations. Total horizontal loads of 1 

kN for rod diameters 0.5 mm and 1 mm, and 10 kN for rod diameter 1.5 mm, are applied 

on the top nodes. The top nodes can only displace over xy-plane oriented according 

to 𝛼 = 45°. Bottom nodes are set as fully clamped. Figure D.7 (right) shows the results 

resume of the resultant shear loads for the analysed rod cases. Analogously to the 

compression case, as the stiffness of the mid-plane node increases, the shear loads 

on the node also increase. The maximum predicted loads on the node before failure 

are below ≈ 30 N. For example, for the case of 1.5 mm (Figure D.7.f), a minimum 

bonding area of ≈ 1.5 mm2 is predicted to avoid failure by debonding (considering an 

adhesive strength of 20 MPa). 
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D.4 Potentially additional failure mode in compressive loading 

When unit cell members collapse, the failure of the structure is attained. Among 

the several failure mechanisms studied in Chapter 5, and additional mode such as 

truss push-out (or the entry of the rod through the skins) is presented within this section 

for compressive loading, as possible failure mode to be included, if another test setup 

is implemented (e.g., no flat or homogeneous plate as the steel plates shown in section 

5.5.1) or outer skin layers are considered. 

Typically, the experimental compressive test set-up includes two steel plates for 

transferring the load to the samples (Figure 5.8.a), and the truss push-out would not 

be attainable. However, the part as a functional component, may undergo truss push-

out. The truss push-out failure is simplified as a debonding failure between the CFRP 

rods and the skins by depicting the contribution of the attached outer skin layers (skin 

layers of thickness 𝑡2 on  Figure 5.22) as a first approach and pessimistic point of view 

(5). This failure mode may result when the shear stresses at the link rods-faces, ex-

ceeds the adhesion strength 𝜏𝑖𝑛𝑡, taken as 𝜏𝑖𝑛𝑡 = 20 MPa [150]. 

𝐴𝑏𝑜𝑛𝑑 =
𝜋𝑑𝑡1
sin𝜔

+
√2𝑓𝜋𝑑

2 sin𝜔
 (D.4) 

Considering the bonded surface as the contact area between the rods and the 

skins, the bonded area 𝐴𝑏𝑜𝑛𝑑  is set as Eq. (D.4), where 𝑡1 represents the thickness of 

the skin in which the rods go through. The glued meniscus between rod and skin with 

an estimated average flank size 𝑓 are also taken into account [150]. The flanks sizes 

are measured in the lab, having a nominal value of 2 mm (in average 𝑓 = 2 ± 0.5 mm) 

for each rod size. The size of the flank is pre-designed in the manufacturing process. 

Thus, the global bonding strength depends upon the adhesion strength, the bonded 

 
(5) The pessimistic point of view has been proposed as a simplistic alternative to the problem 

since it is known beforehand that this failure mode may not occur given the proposed test conditions in 

Chapter 5. The solution is much more complex to deal with and its analyses exceed the scope of this 

work. Nevertheless, if for example, the outer layers are considered and test-plates that allow the pene-

tration of the skin are given in the test-rig, a more realistic push-out failure is presumed to occur when 

the glue shear strength is exceeded in combination with the delamination strength between CFRP layers 

(interfaces t1 and t2 in Figure 5.22), since penetration of the rod into the laminate t2 is not foreseen, 

because they are almost the same material with similar hardness 
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surface between rod-skin and the number of involved trusses N. Then the effective 

critical load for rod-skin bonding failure is 𝐹𝑟𝑜𝑑𝑃 (Eq. (D.5)). 

𝐹𝑟𝑜𝑑𝑃 = 𝐴𝑏𝑜𝑛𝑑𝜏𝑖𝑛𝑡𝑁 (D.5) 

Analogously to previous failure formulations, the parallel load 𝐹∥ is equal in mod-

ulus to 𝐹𝑟𝑜𝑑𝑃, when the adhesion strength is attained. Hence, combining Eq. (D.5) and 

Eq. 5.17 and considering N = 4 within each unit cell, the core compressive strength by 

evaluating truss push-out through the skins is given by Eq. (D.6).  

𝜎𝑐𝑃 ≈
2𝜏𝑖𝑛𝑡𝜋𝑑

𝑙2cos2𝜔 sin 2𝛼
(𝑡1 +

√2

2
𝑓) (D.6) 

 In this case, the main failure modes in Figure 5.14 are modified to Figure D.8, 

denoting rod push-out failure mode for skin thicknesses beyond 0.75 mm under the 

conditions established. For the cases analyses in this work, Table D.4. presents the 

results for the core compressive strength when rod push-out is considered (Eq. D.6.). 

(a) Predicted failure modes (b) Zoomed area  

  

Figure D.8. Modified failure maps according to analytical predictions for compressive 

loads including truss push-out 

Table D.4. Core compressive strengths regarding to rod push-out failure mode 

Ø 𝐿  𝑓  𝑡1  𝛼  𝜔  𝑅1𝑠
−   𝐸𝑟𝑜𝑑1𝑠  𝜎𝑐𝑃 

(mm) (mm) (mm) (mm) (°) (°) (MPa) (MPa) (MPa) 

0.5 17.96 2 0.4 45 45 450 115 0.707 

1 17.96 2 0.4 45 45 450 115 1.416 

1.5 17.96 2 0.4 45 45 450 115 2.131 

 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

5

10

15

20

C
o

m
p

re
s
s
iv

e
 s

tr
e

n
g

th
 (

M
P

a
)

Rod diameter (mm)

  Euler buckling

  Fracture

  Rod push-out 

Zoomed area

0.00 0.25 0.50 0.75 1.00 1.25
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

C
o

m
p

re
s
s
iv

e
 s

tr
e

n
g
th

 (
M

P
a

)

Rod diameter (mm)

Euler buckling

Rod push-out

  Euler buckling

  Fracture

  Rod push-out

  Dominant mode



   300      E. Complementary studies for Chapter 6 and buckling diagrams  

 

E Complementary studies for Chapter 6 and 

buckling diagrams 

E.1 Maximum displacement while bending 

The sketch of Figure E.1 (or the equivalent to Figure 6.1) is employed in this 

section for basic analyses. 

(a) System of real forces (also system “0”) (b) System of a fictitious unit load (also 

system “1”) 

  

Figure E.1. Sketch of the basic beam models in a four-point bending case employed 

for analyses, including shear and flexural moment diagrams  

The maximum displacement w between supports b and c is calculated consid-

ering the unit-load method [67,169]. Two system are defined as of the real forces (sub-

script “0”) and the fictitious unitary load (subscript “1”) given by Eq. E.1. 

𝑤 = ∫
𝑀0𝑀1
𝐸𝐼

𝑑𝑥 (E.1) 

The maximal shear and moment values from the diagrams are given by 

Eq.(5.1), Eq. (6.2) and Eq. (6.3), respectively. 

|𝑄𝑎| = |𝑄𝑑| =
𝑃𝑧
2

 (E.2) 
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|𝑄𝑏| = |𝑄𝑐| =
𝑃𝑧
2

 (E.3) 

|𝑀𝑏| = |𝑀𝑐| =
𝑃𝑧
2
𝐿1 (E.4) 

|𝑄1| =
1

2
 (E.5) 

|𝑀1| =
𝐿2
2

1

2
 (E.6) 

 

Table E.1. Solution values for the integral of the product of moments given by Eq. (E.1) 

[229] 

 

To solve the integral in Eq. (E.1), a practical method is to employ tabulated val-

ues solved resolutions (Table E.1). Therefore, the displacement 𝑤 is found by the sum 

of the displacements due to the moments applied by the real force 𝑃𝑧 , as the constant 

section in 𝐿2 at the system “0”, and the unitary load, as the triangle in 𝐿2 at the system 

“1”.  
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𝑤 = ∫
𝑀0𝑀1
𝐸𝐼

𝑑𝑥
𝐿2/2

0

+∫
𝑀0𝑀1
𝐸𝐼

𝐿2

𝐿2/2

𝑑𝑥 (E.7) 

𝑤 =
2

𝐸𝐼

1

2
[
𝑃𝑧𝐿1
2

(𝐿3 − 2𝐿1)

2

1

2
]
(𝐿3 − 2𝐿1)

2
=
𝑃𝑧
16

𝐿1
𝐸𝐼
(𝐿3 − 2𝐿1)

2 
(E.8) 

The beam under study is made from different materials such as the core and 

the skins. Thus, the flexural stiffness 𝐸𝐼 must be adequate for the case replacing it by 

its equivalent 𝐷𝑥 given by Eq. (6.8), and assuming thin faces and a weak core. Then, 

Eq. E.8 turns into Eq. E.9, as the analytical maximum displacement predicted for the 

sandwich beam.  

𝑤 =
𝑃𝑧
16

𝐿1
𝐷𝑥
(𝐿3 − 2𝐿1)

2 =
𝑃𝑧
16

𝐿1
𝐷𝑥
(𝐿2)

2 (E.9) 

E.2 Coordinates system transformation for the use of homogeneous 

anisotropic faces into face buckling analyses  

Analogously as reference [202], here, the case for an orthotropic core with or-

thotropic faces will be addressed. Recalling the insights presented in chapter 2, the 

stiffness matrix of each orthotropic lamina is given by Eq. (E.10). The lamina itself is 

thought as a very thin plate, which has in-plane stiffnesses but has no bending stiff-

ness. Nevertheless, when laying-up a laminate (i.e., stacking-up laminas), the resulting 

material has a flexural rigidity since a finite thickness is given [51].  

[Q]1,2 =

[
 
 
 
 

𝐸11
1 − 𝜐12𝜐21

𝜐21𝐸11
1 − 𝜐12𝜐21

0

𝜐21𝐸11
1 − 𝜐12𝜐21

𝐸11
1 − 𝜐12𝜐21

0

0 0 𝐺12]
 
 
 
 

  (E.10) 

 To convert one coordinate system as the local coordinate system (lamina) by 1-

, 2- and 3-directions, into another global coordinate system defined by x-, y-, z-direc-

tion, a polar transformation is needed, which graphically is represented by the Mohr's 

circle [8,34]. The transformation matrix is then given by Eq. (E.11) [34], where 𝛼 is the 

fibre orientation angle presented in this case as an UD-lamina or the angle between 

the lay-up and the principal directions of the laminate. 
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[T]1,2→𝑥,𝑦 = [

cos2 𝛼 sin2 𝛼 − sin 2𝛼

sin2 𝛼 cos2 𝛼 sin 2𝛼

0.5 sin 2𝛼 −0.5 sin 2𝛼 cos 2𝛼

]  (E.11) 

 Then, the stiffness matrix of a lamina according to the global coordinate system 

is represented in Eq. (E.12). 

[Q̅]x,y = [T]1,2→x,y ∙ [Q]1,2 ∙ [T]1,2→x,y
𝑇
  (E.12) 

 Since laminates are generally made from many layers of UD-laminas, the sum 

of each layer properties, orientation and stacking sequence will define the final elastic 

characteristics of the composite. Therefore, the stiffness matrixes of the resulting lam-

inated composite are described by Eq.(E.13), where 𝑡𝑘 represents the kth layer´s thick-

ness and 𝑧𝑘 is the distance of each layer from the reference plane.   

[A, B, D] =∑[Q̅]ij,k ∙

n

k=1

[(tk), (tk (𝑧k −
tk
2
)) , (

tk
3

12
+ tk (𝑧k −

tk
2
)
2

)] (E.13) 

 When employing a symmetrical lay-up of orthotropic layers and considering a 

homogeneous plate as the laminate, the reference plane is found at 𝑧𝑘 = 0 coincident 

with the middle surface at 𝑡𝑓/2. Therefore, the bending-extension coupling stiffness 

matrix [B] results zero, while the [A] and [D] result in Eq.(E.14) and Eq.(E.15), respec-

tively. 

[A] = [

A11 A21 0

A22 A22 0

0 0 A33

]  (E.14) 

[D] = [

D11 D21 0

D22 D22 0

0 0 D33

] =
tf
2

12
[A] (E.15) 

If a uniaxial load is applied parallel to one of the principal orthotropic axes of the 

laminate such as x-direction (e.g., as seen in Figure 6.7), the failure load for Winkler´s 

approach is defined by Eq. (E.16), for homogeneous thin plates [51]. 

𝑃𝑓𝑐𝑟𝑖𝑡 =  2√𝐷𝑓𝐾𝑧 (E.16) 

In which  
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𝐾𝑧 = 
2𝐸3𝑐
𝐶

 (E.17) 

The last expression represents the foundation stiffness in the Winkler´s model. 

By introducing Eq. (6.16) and replacing the local bending stiffness 𝐷𝑓 by the first term 

of (D11) of Eq. (E.15) into Eq.(E.16), the failure load by using orthotropic faces is given 

by Eq. (E.18). 

𝑃1𝑓𝑐𝑟𝑖𝑡 =  2√(D11)
2𝐸𝑐𝑧
𝐶

= 2√
tf
2

6
(A11)

𝐸𝑐𝑧
𝐶
=
2

√6
√
tf
2(A11)𝐸𝑐𝑧
𝐶

 (E.18) 

 Where the term (A11) is defined by Eq. (E.19).  

A11 = 𝑡𝑓 [
𝐸𝑥𝑓

1 − 𝜐𝑥𝑦𝜐𝑦𝑥
] ≈ 𝑡𝑓𝐸𝑥𝑓 (E.19) 

 Replacing the last expression into Eq. (E.18), then Eq. (E.20) is attained. 

𝑃1𝑓𝑐𝑟𝑖𝑡 = 
2

√6
√
tf
3𝐸𝑥𝑓𝐸𝑐𝑧

𝐶
 (E.20) 

For this particular case, the local and global coordinate systems are parallel and 

the failure stress under Winkler´s approach is set by Eq. (6.19), when orthotropic ho-

mogeneous faces are employed. The constant factors are expressed as a part of the 

buckling coefficient 𝑄𝑏. 

𝜎1𝑓𝑐𝑟𝑖𝑡 = 𝑄𝑏√
𝐸3𝑐𝐸1𝑓𝑡𝑓

𝐶
 (E.21) 

E.3 Buckling coefficients for different plates sizes, boundary condi-

tions and load cases 

The buckling coefficients 𝐾 for the analysis of intracellular buckling can be ob-

tained from tabulated values under certain conditions, such as constant sections, 

width-length relationships, type of boundary conditions and type of plates as isotropic 

or orthotropic. This section shows graphical solutions as example for estimating coef-

ficient 𝐾. 
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E.3.1 Compression 

When compressive loads are applied on isotropic and orthotropic plates differ-

ent coefficients are attained and are presents as follows. 

E.3.1.1 Isotropic plates 

As a function of the width-length relations α = a / b, and the boundary conditions, 

different curves are obtained for the estimation of the 𝐾 buckling factor, (Figure E.2) 

[171]. 

(a) Reference for dimensions (b) Buckling coefficients for isotropic plates  

 

 

Figure E.2. Buckling coefficients for isotropic plates in compression. 
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E.3.1.2 Orthotropic plates 

The buckling coefficients are also found in graphs like Figure E.3, where two 

common cases of plates are exhibited as a function of the width-length relations, the 

boundary conditions, and the fibre orientations [173] 

 

Figure E.3. Buckling coefficients for orthotropic plates in compression. 

E.3.2 Shear 

When shear loads are applied on orthotropic plates different coefficients are 

attained and are presents as follows. 

E.3.2.1 Orthotropic plates 

The buckling coefficients are also found in graphs like Figure E.4, where the case 

of a simply supported plate is exhibited as a function of the width-length relations, and 

the fibre orientations [173] 
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Figure E.4.. Buckling coefficients for orthotropic plates in shear 
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Nomenclature 

 Abbreviations 

 

Greek symbols 

𝛼 Fibre orientation angle 

𝛼 Director angle 

𝛿 Displacement 

𝜀 Strain 

φ Fibre volume fraction 

𝜙 Fibre misalignment angle 

γ Shear strain 

𝜅 Curvature 

𝜌 Density 

𝜎 Normal stress 

τ Shear stress 

𝜈 Poisson´s modulus 

𝜔 Director angle 

 

Latin symbols 

[A] Extensional stiffness matrix 

1D One Dimensional 

2D Two Dimensional 

3D Three Dimensional 

BCC Body-Centered Cubic 

CFRP Carbon Fibre Reinforced Polymer 

EU European Union 

FE Finite Element Simulations 

FEM Finite Element Method 

FRP Fibre Reinforced Polymers 

OOA Out-Of-Autoclave 

PAN Poly-Acrylonitrile 

PI Performance Index 

UD Unidirectional 

VARI Vacuum Assisted Resin Infusion 

VI Vacuum Assisted Resin Infusion 

CLT Classical Lamination Theory 

LCM Liquid Composite Moulding 

RTM Resin Transfer Moulding 

SCRIMP Seaman's Composite Resin Infusion Moulding 

AM Additive Manufacturing 

VARTM Vacuum Assisted Resin Transfer Moulding 

CNC Computerised Numerical Control 

ULW Ultra-lightweight 

GFRP Glass Fibre Reinforces Polymer 

WJC Water Jet Cutting 
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[B] Bending-extension coupling stiffnesses 

[D] Bending stiffness matrix 

1, 2, 3 Local coordinate system 

A Area 

b, b1, bw Width 

C Core thickness 

C Torsional rigidity 

c or C Core thickness 

d Distance between faces neutral lines 

D Flexural rigidity 

d Rod diameter 

D Diameter 

D0.5, D1, D1.5 Employed rod diameters as 0.5, 1 and 1.5 mm 

F Force 

f Flank 

𝑓𝑓𝑎𝑐𝑒𝑠 Volume fraction occupied by faces 

h Sandwich panel thickness 

H Height 

J  Torsion constant 

K Bending buckling coefficient for intracellular 
buckling 

k  Buckling factor 

l Length 

L Length 

M Areal density 

m Mass 

m Flank 

m or M Moment 

n or N Axial load 

N or Nl Quantity of rods or layers 

P Force 

q Distributed load 

R Material maximum strength 

s Slope 

t Thickness 

T, Q Shear force 

u Displacement 

U Energy 

V Volume 

W Width 

w Beam deflection  

x, y, z Global coordinate system 

𝐶1 Warping rigidity 

𝐶𝑤 Warping constant 

𝐸 Young's modulus 

𝐺 Shear elastic modulus 

𝐼 Second moment of area 

𝐼𝑜 Polar moment of inertia 

𝐾𝑠 Shear buckling factor 

𝑄 Reduced stiffness 
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𝑄b Bending buckling coefficient for face wrinkling 

t Thickness 

𝑡1, 𝑡2 Face thicknesses 

R Material maximum strength 

s Slope 

𝑡1, 𝑡2 Face thicknesses 

T, Q Shear force 

u Displacement 

U Energy 

V Volume 

W Width 

w Beam deflection  

x, y, z Global coordinate system 

 

Other symbols 

Ø Rod diameter 

subscript ∥ Parallel to fibres 

subscript ⊥ Perpendicular to fibres 

subscript B Plate buckling 

subscript bond Referent to the bonded area 

subscript c  Referent to the core or cell 

subscript cell  Referent to the cell 

subscript comp Composite  

subscript crit or cr Critical 

subscript DB Debonding 

subscript eff Effective 

subscript eq  Equivalent 

subscript Eu Euler buckling 

subscript f Referent to the fibres 

subscript f Referent to the faces 

subscript IB Referent to the face intercellular buckling 

subscript int Interphase 

subscript m Referent to the matrix 

subscript P Pull-out 

subscript pk Peak 

subscript R Maximum strength 

subscript rod  Referent to the rod 

subscript s  Parent material 

subscript TB Torsional buckling 

subscript W Referent to the face wrinling 

subscript Y Referent to the face yielding or fracture 

subscript φ Torsional angle in torsional buckling 

superscript - Compressive 

superscript + Tensile 
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