

Plan de inversión para la modificación y ampliación de una planta de ensamble de componentes electrónicos de la empresa Grupo Núcleo S.A

Autores:

de Trápaga, Agustín

Monticelli, Florencia

Trabajo Final de la Carrera Ingeniería Industrial

Departamento de Ingeniería Industrial

Facultad de Ingeniería

Universidad Nacional de Mar del Plata

Mar del Plata – 30 de septiembre de 2014

RINFI es desarrollado por la Biblioteca de la Facultad de Ingeniería de la Universidad Nacional de Mar del Plata.

Tiene como objetivo recopilar, organizar, gestionar, difundir y preservar documentos digitales en Ingeniería, Ciencia y Tecnología de Materiales y Ciencias Afines.

A través del Acceso Abierto, se pretende aumentar la visibilidad y el impacto de los resultados de la investigación, asumiendo las políticas y cumpliendo con los protocolos y estándares internacionales para la interoperabilidad entre repositorios

Esta obra está bajo una <u>Licencia Creative Commons</u>

<u>Atribución- NoComercial-Compartirlgual 4.0</u>

<u>Internacional.</u>

Plan de inversión para la modificación y ampliación de una planta de ensamble de componentes electrónicos de la empresa Grupo Núcleo S.A

Autores:

de Trápaga, Agustín

Monticelli, Florencia

Trabajo Final de la Carrera Ingeniería Industrial

Departamento de Ingeniería Industrial

Facultad de Ingeniería

Universidad Nacional de Mar del Plata

Mar del Plata – 30 de septiembre de 2014

Título del Trabajo: Plan de inversión para la modificación y ampliación de una planta de ensamble de componentes electrónicos de la empresa Grupo Núcleo S.A

Autores: de Trápaga, Agustín Monticelli, Florencia

Evaluadores: Galadeta, Liliana

Esteban, Alejandra

Company, Sergio

Director: Carrizo, Guillermo Adrián

Co-Director: Tabone, Luciana

ÍNDICE

ÍNDICE		iii
ÍNDICE	DE TABLAS	V
ÍNDICE	DE FIGURAS	. vii
ÍNDICE	DE ECUACIONES	ix
TABLA	DE SIGLAS	ix
RESUM	EN	xi
PALABI	RAS CLAVES	xi
SECCIÓ	N 1: INTRODUCCIÓN	1
SECCIÓ	N 2: MARCO TEORICO	5
2.1.	Diagrama de Flujo	6
2.2.	Modelo de las 5 Fuerzas de Porter	6
2.3.	Matriz de perfil competitivo	7
2.4.	Demanda derivada	8
2.5.	Pronóstico de la demanda	8
2.6.	Matriz de Evaluación del Factor Externo (MEFE)	9
2.7.	Matriz de Evaluación del Factor Interno (MEFI)	10
2.8.	Matriz FODA	10
2.9.	Matriz Interna y Externa	11
2.10.	Matriz de la Planeación Estratégica Cuantitativa (MPEC)	12
2.11.	Matriz de Ansoff	13
2.12.	Desarrollo de nuevos productos	13
2.13.	Diseño de instalaciones de manufactura y movimiento de materiales	14
2.13.1	. Procedimiento de diseño de instalaciones de manufactura	15
2.13.1	.1. Lista estructurada de materiales	16
2.13.1	.2. Diseño del proceso productivo	16
2.13.1	.3. Tiempo estándar	18
2.13.1	.4. Tiempo de procesamiento	18
2.13.1	.5. Calculo del número de maquinas	19
2.13.1	.6. Análisis de flujo	19
2.13.1	.6.1. Cursograma sinóptico	20
2.13.1	.6.2. Cursograma analítico	20
2.13.1	.6.3. Diagrama de recorrido	21

2.13.1.7. Distribución en planta	22
2.13.2. Manejo de materiales	22
2.14. Estudio económico	23
SECCIÓN 3: DESARROLLO	25
CAPÍTULO 1: ESTUDIO DE MERCADO NACIONAL	26
3.1.1 Análisis 5 fuerzas de Porter	26
3.1.2 Matriz de Perfil Competitivo	27
3.1.3 Análisis de la demanda	28
3.1.4 Estimación de la demanda	31
CAPÍTULO 2: SITUACIÓN ACTUAL	33
3.2.1. Descripción de la situación actual de la empresa	33
3.2.1.1. Matriz de Evaluación del Factor Externo (MEFE)	33
3.2.1.2. Matriz de Evaluación del Factor Interno (MEFI)	34
3.2.1.3. Matriz FODA	35
3.2.1.4. Matriz Interna y Externa	37
3.2.1.5. Matriz de Planeación Estratégica Cuantitativa (MPEC)	37
3.2.1.6. Matriz de Ansoff	39
3.2.2. Descripción del producto: Memoria RAM	39
3.2.3. Descripción del proceso productivo	40
3.2.3.1. Diagrama de Flujo	40
3.2.3.2. Descripción de las etapas del proceso	42
3.2.3.3. Especificación de equipos principales	44
3.2.3.4. Distribución en planta	51
3.2.4. Nivel de Producción	52
CAPÍTULO 3: SITUACIÓN MODIFICADA: AMPLIACIÓN DE LA PLANTA .	56
3.3.1. Descripción del producto incorporado: Motherboard	56
3.3.2. Descripción del proceso productivo de <i>Motherboards</i>	57
3.3.2.1. Descripción de las etapas del proceso	57
3.3.2.2. Análisis de la estrategia de flujo	58
3.3.2.3. Especificación de equipos principales	59
3.3.2.4. Diseño de la nueva distribución en planta	63
3.3.2.4.1. Análisis de Flujo	70
3.3.2.4.1. Cursogramas Analíticos	78

3.3.2.4.2. Re	querimientos de superficie	83
3.3.3. Estima	ción de la producción	86
CAPÍTULO 4: JU	STIFICACIÓN ECONÓMICA	90
3.4.1 Estimació	n de la Inversión Fija	90
3.4.2 Estimació	n de los costos de producción	93
3.4.2.1 Co	stos variables	94
3.4.2.2 Co	stos fijos	97
3.4.3 Cuadro de	e fuentes y usos de fondos	105
3.4.4 Estimació	n del retorno sobre la inversión	108
3.4.5 Análisis d	el tiempo de repago	109
SECCIÓN 4: CONC	CLUSIONES	110
CONCLUSIONES	S	111
SECCIÓN 5: BIBLI	OGRAFÍA	113
BIBLIOGRAFÍA		114
SECCIÓN 6: ANEX	os	116
ANEXO I – Inform	ne "Predictor" Crystal Ball	117
ANEXO II – Lista	estructurada de materiales	120
ANEXO III – Hora	Hombre por Producto	138
ANEXO IV – Coti	zación seguro	139
ANEXO V - Fond	o Nacional para el Desarrollo y Fortalecimiento de las Mi	PyMEs
(FONDyF)		140
ÍNDICE DE TAB	LAS	
Tabla 1: Símbolos ι	ıtilizados en un Diagrama de Flujo	6
Tabla 2: Lista estru	cturada de materiales	16
Tabla 3: Símbolos ι	utilizados en los Cursogramas Sinóptico y Analítico	21
Tabla 4: Matriz de F	Perfil Competitivo	27
Tabla 5: Equipos im	portados y nacionales	28
Tabla 6: Participaci	ón de la manufactura Argentina en el mercado nacional	29
Tabla 7: Previsión p	para equipos importados	31
Tabla 8: Previsión e	equipos nacionales	31
	Evaluación del Factor Externo	
Tabla 10: Matriz de	Evaluación del Factor Interno	35

Tabla 11: Matriz FODA	36
Tabla 12: Matriz de Planeación Estratégica Cuantitativa	38
Tabla 13: Características principales Printer Momentum MPM	44
Tabla 14: Características principales KE 2080	45
Tabla 15: Características principales MTS	46
Tabla 16: Características principales Horno Reflow	47
Tabla 17: Características principales SP 3000	48
Tabla 18: Características principales Loader / Unloader	49
Tabla 19: Características principales Conveyor	50
Tabla 20: Producción mensual memorias RAM	53
Tabla 21: Porcentaje de la capacidad de producción utilizada	55
Tabla 22: Características principales SPI KY8030	60
Tabla 23: Características principales FX3 Chip Shooter	61
Tabla 24: Características principales Router	62
Tabla 25: Tiempo estándar de las operaciones de la Memoria RAM	68
Tabla 26: Tiempo estándar de las operaciones del Motherboard	68
Tabla 27: Cantidad de Chips ensamblados por equipo	69
Tabla 28: Cantidad de equipos necesarios para la producción	70
Tabla 29: Memoria RAM - Distancia recorrida por los materiales	74
Tabla 30: Memoria RAM - Tráfico cruzado	74
Tabla 31: Motherboard - Distancia recorrida por los materiales	77
Tabla 32: Motherboard - Tráfico cruzado	77
Tabla 33: Cursograma Analítico Memoria RAM: Blíster plástico antiestático	78
Tabla 34: Cursograma Analítico Memoria RAM: Componentes	79
Tabla 35: Cursograma Analítico Memoria RAM: Pasta de soldar	79
Tabla 36: Cursograma Analítico Memoria RAM: Placa Base	80
Tabla 37: Cursograma Analítico Memoria RAM	80
Tabla 38: Cursograma Analítico Motherboard: Bolsa plástica antiestática	81
Tabla 39: Cursograma Analítico Motherboard: Componentes	81
Tabla 40: Cursograma Analítico Motherboard: Pasta de soldar	82
Tabla 41: Cursograma Analítico Motherboard: Placa Base	82
Tabla 42: Cursograma Analítico Motherboard	83
Tabla 43: Requerimiento de superficie Memoria RAM	84

Tabla 44: Requerimiento de superficie <i>Motherboard</i>	85
Tabla 45: Participación de Grupo Núcleo en el mercado	87
Tabla 46: Proyección de la producción de memorias RAM	88
Tabla 47: Proyección de la producción de motherboards	88
Tabla 48: Producción objetivo de <i>motherboards</i>	89
Tabla 49: Prorrateo según ingresos por ventas	92
Tabla 50: Estimación de la inversión fija	93
Tabla 51: Inversión por producto	93
Tabla 52: Costo materia prima y envases	94
Tabla 53: Detalle de principales componentes del motherboard	95
Tabla 54: Consumo eléctrico de equipos	96
Tabla 55: Costo anual de electricidad por producto	96
Tabla 56: Costos de mantenimiento	97
Tabla 57: costos de mano de obra	98
Tabla 58: Costo de depreciación método línea recta	98
Tabla 59: Costo de seguros	99
Tabla 60: Financiación sistema francés	100
Tabla 61: Costos de venta y distribución	100
Tabla 62: Costo de administración y dirección	100
Tabla 63: Costos de producción para el año 2017	102
Tabla 64: Proyección costos e ingresos incrementales	106
Tabla 65: Flujo de caja incremental del proyecto	107
Tabla 66: Flujo de caja incremental del inversionista	108
Tabla 67: Lista estructurada de materiales memoria RAM	126
Tabla 68: Lista estructurada de materiales Motherboard	137
Tabla 69: Tiempos de producción	138
ÍNDICE DE FIGURAS	
Figura 1: Cuadrantes – Matriz Interna y Externa	11
Figura 2: Matriz producto-proceso	17
Figura 3: Esquema de las 5 fuerzas de Porter	26
Figura 4: Evolución equipos importados y nacionales	30
Figura 5: Previsión equipos importados y nacionales	32

Figura 6: Matriz Interna y Externa	37
Figura 7: Matriz de Ansoff	39
Figura 8: Memoria SODIMM	40
Figura 9: Memoria UDIMM	40
Figura 10: Blíster plástico antiestático	40
Figura 11: Diagrama de Flujo	41
Figura 12: Printer Momentum MPM	44
Figura 13: KE 2080	45
Figura 14: MTS	46
Figura 15: Horno Reflow	47
Figura 16: SP 3000	48
Figura 17: Loader / Unloader	49
Figura 18: Conveyor	50
Figura 19: Distribución en planta	51
Figura 20: Producción anual memorias RAM	53
Figura 21: Producción 1° bimestre	54
Figura 22: Motherboard	57
Figura 23: Bolsa plástica antiestática	57
Figura 24: Matriz producto-proceso	59
Figura 25: SPI KY8030	60
Figura 26: FX3 Chip Shooter	61
Figura 27: Router	62
Figura 28: Cursograma Sinóptico Memoria RAM	64
Figura 29: Cursograma Sinóptico Motherboard	66
Figura 30: Diagrama de recorrido Memoria RAM - Alternativa 1	72
Figura 31: Diagrama de recorrido Memoria RAM - Alternativa 2	73
Figura 32: Diagrama de recorrido Motherboard- Alternativa 1	75
Figura 33: Diagrama de recorrido Motherboard - Alternativa 2	76
Figura 34: Carro de ruedas de dos manos	86
Figura 35: Estructura de costos incrementales	. 103
Figura 36: Costos variables incrementales	. 104
Figura 37: Costos fijos incrementales	. 105
Figura 38: Tiempo de repago	. 109

ÍNDICE DE ECUACIONES

(Ecuación 1)	19
(Ecuación 2)	19

TABLA DE SIGLAS

RMA: Autorización de Devolución de Mercadería.

SMT: Tecnología de Montaje Superficial.

RAM: Memoria de Acceso Aleatorio.

PC: Computadora Personal.

SODIMM: Small Outline Dual In-line Memory.

UDIMM: Unregistrated Dual In-line Memory.

ARIMA: Modelo Autorregresivo Integrado de Media Móvil.

RMSE: Error Cuadrático Medio.

TIR: Tasa Interna de Retorno.

ISO: International Standards Organization, Organización Internacional de Normalización.

PCBs: Printed Circuit Boards o Tarjeta de Circuito Impreso.

AIO: All in One.

FONDyF: Fondo Nacional para el Desarrollo y Fortalecimiento de las MiPyMEs.

OIT: Organización Internacional del Trabajo.

CAMOCA: Cámara Argentina de Máquinas de Oficina Comerciales y Afines.

TVD: Televisión Digital.

CPH: Chip por Hora.

CPU: Central Processing Unit o Unidad Central de Procesamiento.

NP: Número de Parte.

EDEA: Empresa Distribuidora de Energía Atlántica.

IVA: Impuesto al Valor Agregado.

S.R.L: Sociedad de Responsabilidad Limitada.

S.A: Sociedad Anónima.

CADIEEL: Cámara Argentina de Industrias Electrónicas, Electromecánicas y Luminotécnicas.

MEFE: Matriz de Evaluación del Factor Externo.

MEFI: Matriz de Evaluación del Factor Interno.

MPEC Matriz de la Planeación Estratégica Cuantitativa.

PA: Puntajes del Grado de Atracción.

PTA: Puntajes Totales del Grado de Atracción.

TNA: Tasa Nominal Anual.

CPPC: Costo Promedio Ponderado del Capital

RESUMEN

El presente proyecto de inversión tiene como objetivo general evaluar la factibilidad de ampliar y modificar la planta de SMT (Tecnología de Montaje Superficial) de la empresa Grupo Núcleo, localizada en la ciudad de Mar del Plata destinada al ensamble de memorias RAM. El análisis se lleva a cabo para un provecto de 3 años de duración. Se analiza la demanda derivada de computadoras portátiles, tanto importadas como nacionales y se concluye que la participación en el mercado de equipos nacionales fue 66% mayor en el 2014 que la de equipos importados. El mercado nacional se encuentra en crecimiento sostenido durante los últimos años y se prevé que dicho crecimiento vaya en aumento, lo que resulta de gran atractivo para el presente proyecto. En base al análisis de mercado se realiza una estimación de la demanda para los años 2015, 2016 y 2017 utilizando el software "Predictor" de Crystal Ball. A partir de la oportunidad de comenzar a ensamblar motherboards en la misma planta de SMT se analiza la factibilidad económica y el diseño de la nueva distribución en planta para incorporar el ensamble de dicho producto. La utilización de las herramientas de estudio correspondientes permite determinar una nueva distribución en planta que optimice las distancias recorridas y los flujos cruzados, como así también el manejo de materiales y la distribución de los equipos necesarios para llevar a cabo la producción. Teniendo en cuenta el pronóstico de la demanda se realiza una estimación de la producción. Se calcula la inversión incremental que se genera por la modificación de la planta para producir motherboards y el incremento de memorias RAM, la cual resulta de 2.337.253,77 US\$. También se calculan los costos totales incrementales de producción y los ingresos incrementales esperados en función de la demanda pronosticada. A partir de dicha información se confecciona el cuadro de fuentes y usos de fondos, mediante el que se obtiene una tasa interna de retorno (TIR) incremental del proyecto, que resulta 45%, y la del inversionista, que resulta del 51%. El costo del capital propio en dólares promedio (K_e) para una empresa del rubro de la electrónica es 34.4%. Dado que este valor es superior a la TIR incremental del inversionista, el proyecto resulta rentable.

PALABRAS CLAVES

Plan de inversión, memoria RAM, *motherboard*, SMT, distribución en planta.

SECCIÓN 1: INTRODUCCIÓN

GRUPO NUCLEO S.A. es una empresa de capitales argentinos, fundada en la ciudad de Mar del Plata, en 1996. Actualmente posee además una sede en Capital Federal.

Es una empresa fabricante y distribuidora de productos, insumos y accesorios tecnológicos con desarrollo nacional e internacional. Se caracteriza por ser especialista en el mercado, reconocida y diferenciada por la calidad, la atención personalizada y el servicio post-venta.

Grupo Núcleo fabrica productos EUROCASE y PC BOX y distribuye y vende productos LG, GIGABYTE, AMD, EPSON, LENOVO, HP, INTEL y DURACELL entre otros. Los procesos de producción se encuentran bajo los requisitos del sistema de gestión de la calidad ISO 9001.

Los departamentos que integran la empresa son: Ventas, Armado, Autorización de Devolución de Mercadería (RMA), planta de Tecnología de Montaje Superficial (SMT), Logística, Administración, Compras y Marketing (Grupo Núcleo, 2014).

Las políticas gubernamentales de comercio exterior tales como la dificultad para importar determinados bienes y el aumento de los aranceles han fomentado el crecimiento de la industria electrónica a nivel nacional. Cabe destacar que desde 2003 a 2011, el país registró una fase de crecimiento económico en gran parte debido a una política económica de dólar alto destinada a favorecer la sustitución de importaciones, que ha incrementado la competitividad de la industria argentina.

La demanda de computadoras, tablets, netbooks y notebooks se encuentra en crecimiento. Desde el año 2008 hasta el 2014, el número ascendió de 49.000 unidades de computadoras portátiles nacionales y 450.000 importadas, a 1.007.640 y 503.814 respectivamente, solamente en el primer semestre de 2014. (CAMOCA, 2014)

Grupo Núcleo supo responder a dicha oportunidad de mercado la cual le ha permitido crecer notablemente en los últimos años. La empresa no sólo aumentó su patrimonio físico, sino que, de forma constante, adquiere nuevas tecnologías, manteniéndose a la vanguardia. La empresa evalúa como indispensable realizar modificaciones que le permitan adaptarse a las cambiantes necesidades del

mercado nacional ya que la rivalidad entre los competidores dentro del segmento en cuestión es alta, debido a que éstos son numerosos y se encuentran bien posicionados. Las barreras de entrada son elevadas debido al costo de la infraestructura necesaria para llevar a cabo la producción.

El alcance del presente trabajo involucra únicamente el área de SMT, el cual es un método para producir circuitos electrónicos cuyos componentes son montados o posicionados directamente sobre la superficie de PCBs (Printed Circuit Boards o, en castellano, Tarjeta de Circuito Impreso).

El objetivo es desarrollar un plan de inversión para llevar a cabo la modificación y ampliación de la planta SMT, la cual lleva a cabo únicamente el ensamble de memorias RAM, buscando incorporar el de *Motherboard*¹ en respuesta a la creciente demanda de equipos electrónicos y a una demanda concreta del Programa Conectar Igualdad. El mismo fue creado en abril de 2010 a través del Decreto Nº 459/10 de la Presidenta de la Nación, Cristina Fernández de Kirchner. Dicho programa tiene como objetivo entregar una netbook a todos los estudiantes y docentes de las escuelas públicas secundarias, de educación especial, y de los institutos de formación docente. Durante el año 2014 se invirtieron más de 3.500 millones de pesos y se produjeron 1.1 millones de computadoras portátiles, esperándose para el año entrante valores similares o aún mayores (CADIEEL, 2014).

En el capítulo 1 se lleva a cabo un estudio de mercado, el cual permite tener conocimiento de la situación actual del mercado nacional de la industria informática, estimando la demanda del mercado y el porcentaje del mercado a abastecer.

En el capítulo 2 se describe la situación actual de la empresa, en lo que respecta a productos y procesos. A su vez, se presentan datos sobre la producción de los últimos años, y su rentabilidad.

En el capítulo 3 se propone la modificación y ampliación de la planta como resultado de la incorporación de la línea de ensamble de *motherboards*. Se describe el producto y el proceso productivo implicado, y se estima la capacidad de

¹ La Placa base es una tarjeta de circuito impreso a la que se conectan los componentes que constituyen la computadora.

producción basándose en el estudio de mercado realizado en el capítulo 2. Además se determinan las modificaciones del lay out de la planta.

En el capítulo 4 se estima la inversión fija y se calculan los costos involucrados en el proyecto. Posteriormente se evalúa la rentabilidad del mismo.

Luego se realiza un análisis global del trabajo y la posterior extracción de conclusiones.

SECCIÓN 2: MARCO TEORICO

2.1. Diagrama de Flujo

Para comprender las secuencias de actividades implicadas en el proceso productivo de memorias RAM y *motherboards* se utiliza un diagrama de flujo, a través del mismo se indica el movimiento y/o interrelaciones de movimientos con más claridad que los gráficos.

En ellos se emplean 5 símbolos que sirven para representar las actividades o sucesos implicados en el proceso. (OIT, 1998)

Símbolo	Denominación
	Operación
	Inspección
	Transporte
	Depósito provisional o espera
	Almacenamiento permanente

Tabla 1: Símbolos utilizados en un Diagrama de Flujo Fuente: Elaboración propia en base a datos de OIT,1998.

2.2. Modelo de las 5 Fuerzas de Porter

Para realizar el estudio de mercado nacional será útil utilizar la herramienta de las 5 fuerzas de Porter que permitirá analizar el posicionamiento actual de la empresa.

Se trata de un modelo holístico que permite analizar cualquier industria en términos de rentabilidad, es decir qué produce la rentabilidad, cuáles son las tendencias, las reglas del juego y cuáles son las restricciones en cada industria. Fue desarrollado por Michael Porter en 1979. Según el mismo, la rivalidad con los competidores viene dada por cuatro elementos o fuerzas (poder de negociación de los proveedores, entrada potencial de nuevos competidores, poder de negociación de los consumidores, desarrollo potencial de productos sustitutos) que combinadas crean una quinta fuerza: la rivalidad entre los competidores.

El modelo de las 5 fuerzas de Porter no aporta una mera fotografía estática de un sector, sino que trata de desentrañar la dinámica de dicho sector, identificando los factores clave para la rentabilidad de la misma.

El conocer dichas fuerzas puede ayudar a una empresa a encontrar su posicionamiento e incluso, en algunos casos, permite a una empresa cambiar por completo las reglas de una industria. (Robbins & Coulter, 2010)

2.3. Matriz de perfil competitivo

La Matriz de perfil competitivo identifica a los principales competidores de una empresa, así como sus fortalezas y debilidades específicas en relación con la posición estratégica de una empresa en estudio. Se trata de una herramienta que resume la información decisiva sobre los competidores respondiendo a las siguientes cuestiones (David, 2003):

- ¿Quiénes son los principales competidores?
- ¿Qué factores claves son los de mayor importancia para tener éxito en la industria?
- ¿Cuál es la importancia relativa de cada factor decisivo para el éxito en la industria?
- ¿Qué tan fuerte o débil es cada competidor importante en relación a cada factor decisivo?

Para la confección de la matriz se sigue el siguiente procedimiento:

- 1. Seleccionar los factores claves del éxito y ponderarlos según la importancia.
- 2. Seleccionar los principales competidores de la empresa en estudio.
- 3. Calificar a cada competidor con una puntuación de 1 a 4, en cada uno de los factores de éxito seleccionados.
- 4. Ponderar el peso del factor de éxito con la puntuación y calcular la puntuación total de cada competidor.
- 5. Identifique a los competidores según la puntuación obtenida:
 - Calificación 4: Muy fuertes
 - Calificación 3: Fuertes

• Calificación 2: Menos débiles

Calificación 1: Débiles

2.4. Demanda derivada

Para realizar el estudio de mercado nacional será útil analizar la demanda derivada de los productos, la cual es consecuencia directa de otra. Es decir, la demanda de productos y servicios se deriva de la demanda de los productos y servicios de sus clientes (cuya demanda también puede ser derivada). Por ejemplo, la demanda de los factores de la producción y de los productos intermedios es consecuencia de la demanda de bienes finales en el mercado de productos terminados. (Dwyer, F. R., Tanner, J. F., Sauri, J. H. L., Arellano, J. A. V., & Hernández, M. E. M., 2007)

2.5. Pronóstico de la demanda

Para determinar el pronóstico de la demanda se utiliza el software llamado *Crystal Ball*, a través del cual, a partir de datos históricos, se realiza una proyección de los mismos para predecir acontecimientos futuros y posibles tendencias. Conocer la demanda de computadoras portátiles a futuro será útil para determinar la capacidad de producción de la empresa (Hamdy, 2004).

Crystal Ball es una herramienta flexible, que puede aplicarse para resolver prácticamente cualquier problema en que la incertidumbre y variabilidad distorsionen las predicciones de una hoja de cálculo. Además de la simulación, puede usar los datos históricos para crear modelos predictivos y buscar las soluciones óptimas que tengan en cuenta la incertidumbre y las restricciones (UNCUYO & FCE, 2013).

El software *Crystal Ball* realiza el pronóstico con métodos estacionales, no estacionales y con el Modelo Autorregresivo Integrado de Media Móvil (ARIMA); y selecciona aquel que tenga menor Error Cuadrático Medio (RMSE), el cual mide el promedio de los errores al cuadrado. El método ARIMA es un modelo estadístico que utiliza variaciones y regresiones de datos estadísticos con el fin de encontrar patrones para una predicción hacia el futuro. Se trata de un modelo dinámico de series temporales, es decir, las estimaciones futuras vienen explicadas

por los datos del pasado y no por variables independientes. En cuanto al método de doble suavizado exponencial, es un método óptimo para patrones de demanda que presentan una tendencia, y un patrón estacional constante, en el que se pretende eliminar el impacto de los elementos irregulares históricos mediante un enfoque en períodos de demanda reciente.

2.6. Matriz de Evaluación del Factor Externo (MEFE)

Es una matriz que permite resumir y evaluar la información proveniente de factores externos del tipo económico, social, cultural, demográfico, ambiental, político, legal y competitivo, clasificándola en oportunidades u amenazas, según corresponda. El procedimiento para su confección consiste en:

- Se elabora una lista de factores externos, clasificándolos en oportunidades y amenazas.
- Se asigna a cada factor un valor de acuerdo a su importancia relativa, comprendido entre 0 (sin importancia) y 1 (muy importante). La suma de todos los valores asignados a los factores debe ser igual a 1.
- 3. Se asigna una clasificación de 1 a 4 a cada factor externo clave, para indicar con cuanta eficacia responden las estrategias actuales de la empresa a dicho factor. Si responden en forma excelente se le asigna un 4, sobre el promedio un 3, promedio un 2 y en forma deficiente un 1.
- 4. Se multiplica el valor de cada factor por su puntuación, para determinar su valor ponderado.
- 5. Se suman los valores ponderados de cada variable, determinándose el valor ponderado de toda la empresa.

Un valor ponderado de 4 indica que las estrategias de la empresa responden de manera excelente, explotando las oportunidades y minimizando las amenazas. El valor promedio ponderado total de la matriz es de 2,5. Un valor por debajo del promedio indica que las estrategias de la empresa requieren ser reformuladas, ya que no responden a las características del sector (David, 2003).

2.7. Matriz de Evaluación del Factor Interno (MEFI)

Es una forma resumida de realizar una auditoria interna de la administración estratégica de la organización. Resume las fortalezas y debilidades más importantes dentro de las áreas funcionales de un negocio o una empresa permitiendo identificar y evaluar sus relaciones. El procedimiento para su confección consiste en:

- Se enumeran los factores internos identificados.
- 2. Se asigna a cada factor un valor de acuerdo a su importancia relativa, comprendido entre 0 ("Sin importancia") y 1 ("Muy importante"). La suma de todos los valores asignados a los factores debe ser igual a 1.
- 3. Se asigna una clasificación de 1 a 4 a cada factor, indicando si representa una debilidad mayor (1), una debilidad menor (2), una fortaleza menor (3) o una fortaleza mayor (4).
- 4. Se multiplica el valor de cada factor por su clasificación, para determinar un valor ponderado para cada variable.
- 5. Se suman los valores ponderado de cada variable, determinándose el valor ponderado de toda la empresa.

Un valor de 4 indica que las estrategias responden en forma sobresaliente a las oportunidades y minimizan los efectos de las amenazas. Si el valor ponderado se encuentra por debajo del promedio (2,5), indica una empresa con una posición interna débil. Si un factor interno es tanto una fortaleza como una debilidad, debe ser incluido dos veces en la matriz asignándole un valor y una clasificación a ambas modalidades (David, 2003).

2.8. Matriz FODA

Para conocer la situación actual de la empresa se utiliza la matriz FODA que es útil para el desarrollo de estrategias.

Esta matriz es un instrumento de ajuste importante que ayuda a los gerentes a desarrollar estrategias, ofreciendo distintas líneas de acción. Permite conocer la situación real en la que se encuentra una organización o proyecto mediante el

análisis de sus características internas (debilidades y fortalezas) y su situación externa (amenazas y oportunidades).

Dicho análisis permite obtener diferentes líneas de acción que resultan de combinar las fortalezas y las debilidades con las oportunidades y amenazas; para luego favorecer la implementación de la estrategia elegida (David, 2003).

2.9. Matriz Interna y Externa

La matriz Interna y Externa se divide en cuadrantes formando tres regiones y registra las diferentes divisiones de una empresa, en relación a recomendar estrategias de "crecimiento y construcción", "conservar y mantener" o "cosechar y enajenar" dependiendo del cuadrante donde se posiciona la organización.

Dicha matriz se basa en dos dimensiones clave: los puntajes de valor totales de la MEFI sobre el eje x, y, los puntajes de valor totales de la MEFE, sobre el eje y.

Una puntuación total de la MEFI de 1 a 1,99, registrado sobre el eje x, representa una posición interna débil; un puntaje de 2 a 2,99 indica un valor promedio y un puntaje de 3 a 4, una posición intermedia sólida. De la misma manera sobre el eje y, un puntaje total de la matriz EFE de 1 a 1,99, se considera bajo; un puntaje de 2 a 2,99 representa un valor medio y un puntaje de 3 a 4 es un valor alto. Los cuadrantes se dividen tal como se muestra en la Figura 1.

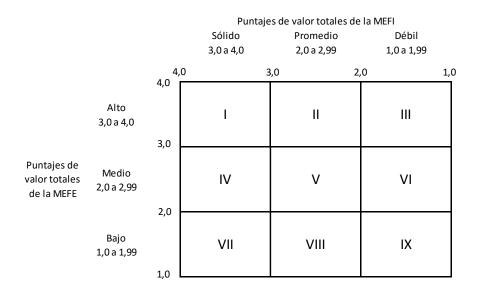


Figura 1: Cuadrantes – Matriz Interna y Externa
Fuente: Elaboración propia en base a datos de Grupo Núcleo

La matriz se divide en tres regiones que tienen implicancias estratégicas distintas:

- La recomendación para las divisiones que se encuentran en los cuadrantes I,
 II o IV, es "crecer y construir". Las estrategias intensivas de penetración de mercado, desarrollo de mercados y desarrollo de productos o las estrategias de integración, vertical y horizontal son las más adecuadas.
- Las divisiones que se ubican en los cuadrantes III, V o VI, se dirigen mejor por medio de estrategias de "conservar y mantener". La penetración de mercado y el desarrollo de productos son dos estrategias recomendadas para estas divisiones.
- Una recomendación común para las divisiones que se localizan en los cuadrantes VI, VII o IX es "cosechar o enajenar" (David, 2003).

2.10. Matriz de la Planeación Estratégica Cuantitativa (MPEC)

La matriz MPEC determina el grado relativo de atracción de diversas estrategias buscando aprovechar o mejorar los factores de éxito internos y externos. La matriz utiliza los datos obtenidos en la MEFI y MEFE como así también los resultados de la Matriz FODA y la Matriz Interna y Externa para seleccionar objetivamente una estrategia.

Los factores internos y externos, obtenidos en la MEFI y MEFE, constituyen la columna izquierda de la matriz y en una columna adyacente a esta se registran los valores recibidos por cada factor.

Las alternativas de estrategia, derivadas de la matriz FODA y la matriz Interna y Externa, integran la línea superior de la matriz MPEC.

El procedimiento para su confección consiste en:

1. Se determinan los Puntajes del Grado de Atracción (PA), definidos como valores numéricos que indiquen el grado relativo de atracción de cada estrategia en función a cada alternativa. El rango de los puntajes varía de 1 a 4 siendo: 1: Sin atractivo, 2: Algo atractivo, 3: Más o menos atractivo y 4: Muy atractivo.

- 2. Se calculan los Puntajes Totales del Grado de Atracción (PTA) multiplicando los valores de cada factor por el PA correspondiente.
- 3. Se suman los PTA y se obtiene la estrategia que resulta más atractiva (David, 2003).

2.11. Matriz de Ansoff

Con el fin de conocer la situación actual de la empresa con respecto a sus estrategias, se utiliza la matriz de Ansoff o matriz de producto / mercado. Se trata de una herramienta de análisis estratégico que los directivos de las empresas utilizan para definir cuáles son las alternativas estratégicas que tiene la organización para incrementar sus ventas.

En cada uno de los ejes de la matriz de Ansoff se representan las posibilidades actuales o futuras de la empresa en cuanto a productos y mercados. Esta matriz ofrece cuatro alternativas estratégicas: penetración de mercados, desarrollo de productos, diversificación y desarrollo de mercados (Dwyer, F. R., Tanner, J. F., Sauri, J. H. L., Arellano, J. A. V., & Hernández, M. E. M., 2007).

2.12. Desarrollo de nuevos productos

El desarrollo de nuevos productos constituye una parte esencial para los negocios, ya que éstos proporcionan oportunidades de crecimiento y una ventaja competitiva para una empresa. El diseño de nuevos productos afecta mucho las operaciones de los productos existentes por lo que dichas áreas deben estar estrechamente coordinadas para asegurar su correcta integración. Los nuevos productos se deben definir no sólo teniendo en mente al mercado, sino al proceso de producción que se usará para elaborarlos.

Existen tres formas muy distintas de introducir nuevos productos: enfoque basado en el mercado, impulso de la tecnología y enfoque interfuncional.

 Enfoque basado en el mercado: De acuerdo con esta perspectiva, el mercado es la base principal para determinar los productos que debería elaborar una

empresa, con poca consideración de la tecnología existente. Es decir, una organización debe producir lo que puede vender.

- Impulso de la tecnología: En esta perspectiva, la tecnología es el componente fundamental de los productos que la empresa debería elaborar, con poca consideración del mercado. La organización debe perseguir una ventaja basada en la tecnología por medio del desarrollo de tecnologías y productos superiores. De este modo, los productos son "impulsados" hacia el mercado, y el trabajo de mercadotecnia es crear una demanda para esos productos superiores.
- Perspectiva interfuncional: Esta perspectiva sostiene que el producto no sólo debe ajustarse a las necesidades del mercado, sino que, además, debe tener una ventaja técnica.

En cuando a las fases características que siguen las organizaciones en el desarrollo de nuevos productos estas son:

- Desarrollo del concepto: Incluye la generación de la idea y la evaluación de opciones alternativas para un nuevo artículo.
- Diseño del producto: Esta fase se relaciona con el diseño físico del nuevo producto.
- Producción/prueba piloto: experimentación de los prototipos de producción antes de que se elaboren.

2.13. Diseño de instalaciones de manufactura y movimiento de materiales

El diseño de instalaciones de manufactura se refiere a la organización de las instalaciones físicas de la compañía con el fin de promover el uso eficiente de sus recursos, como personal, equipo, materiales y energía. El diseño de instalaciones incluye la ubicación de la planta y el diseño del inmueble, la distribución de la planta y el manejo de materiales.

Por su parte, el manejo de materiales se define sencillamente como mover material. Su estudio resulta importante ya que las mejoras en el manejo de

materiales tienen un efecto positivo sobre los trabajadores más que cualquier otra área de diseño del trabajo y la ergonomía (Stephens, M., & Meyers, F. E., 2006).

2.13.1. Procedimiento de diseño de instalaciones de manufactura

La forma sistemática para elaborar el proyecto de diseño se estructura de la siguiente forma:

- 4. Determinar lo que se producirá.
- 5. Calcular cuántos artículos se fabricarán por unidad de tiempo.
- 6. Definir qué partes se fabricarán o comprarán, para ello será necesario disponer de una lista estructurada de materiales (Ver 2.13.1.1.).
- 7. Determinar cómo se fabricará cada parte.
- 8. Determinar la secuencia de ensamblado. Para ello será necesario elegir la estrategia de flujo del proceso que permita conocer la manera de organizar el proceso mediante la organización de los recursos en torno al proceso o en torno a los productos. (Ver 2.13.1.2.)
- 9. Establecer estándares de tiempo para cada operación (Ver 2.13.1.3.).
- 10. Determinar la tasa de la planta o tiempo de procesamiento (Ver 2.13.1.4.).
- 11. Calcular el número de máquinas necesarias (Ver 2.13.1.5.).
- 12. Estudiar los patrones de flujo del material para establecer cuál es el mejor. Es decir, para realizar el análisis de flujo se utilizan cursogramas sinópticos, cursogramas analíticos y diagramas de recorrido (Ver 2.13.1.6.1., 2.13.1.6.2 y 2.13.1.6.3., respectivamente).
- 13. Desarrollar los requerimientos de espacio total a partir de la información anterior y la adecuada distribución en planta (Ver 2.13.1.7.).
- 14. Seleccionar el equipo de manejo de materiales (Ver 2.13.2.).

En los siguientes apartados se procede a desarrollar los pasos que requieren un mayor grado de detalle.

2.13.1.1. Lista estructurada de materiales

La lista de materiales enumera todas las partes que constituyen un producto terminado. Esta lista incluye los número de partes, sus nombres, la cantidad de cada una, cuáles partes constituyen subensambles y tal vez especificaciones de los materiales y los costos unitarios de las materias primas, así como las decisiones de fabricar o comprar.

El nivel más elevado del producto o ensamble terminado aparece en la parte superior de la lista y se le asigna el nivel cero. Debajo de éste se enlistan los ensambles principales, a los que se asigna el nivel uno (.1). El punto antes del dígito 1 subordina los subensambles principales al ensamble principal. Los componentes que comprende cada subensamble se enlistan bajo cada uno de éstos y se numeran con el nivel dos (..2). A su vez, debajo cada componente se mencionan las partes subordinadas y se numera cada una con el nivel tres (...3) (OIT, 1998).

En la Tabla 2 se presenta un ejemplo de la lista estructurada de materiales.

Compañía: ACME, Inc. Producto: Supergismo			: ACME, Inc. Preparado por: M.P.S.		
			Fecha:	Fecha:	
Nivel	Núm. de parte	Nombre de la parte	Núm. de dibujo	Cantidad por unidad	Fabricar o comprar
0	0012	Supergismo	0012	1	Fabricar
.1	0034	Estructura principal	0034	1	Fabricar
.1	0421	Soporte de 4'	0421	2	Fabricar
2	0344	Correas sujetadoras	0344	4'	Comprar
.1	0113	Inserción de 1/4"	0113	2	Fabricar
2	0123	Tubo	0123	1	Fabricar
3	0014	Pintura clara		1 gal/100	Comprar
.1	0019	Abrazadera	0019	3	Fabricar
2	0177	Tuerca de 1/4-20	0177	4	Comprar
2	0192	Collar de 3/16"	0192	2	Fabricar
.1	0330	Cilindro	0330	1	Comprar

Tabla 2: Lista estructurada de materiales
Fuente: OIT, 1998

2.13.1.2. Diseño del proceso productivo

Para la elección de la estrategia de flujo del proceso, se utiliza la matriz producto-proceso. Dicho flujo es la manera de estructurar el proceso mediante la organización de los recursos en torno al proceso o en torno a los productos. En la

Figura 2 se muestra dicha matriz (Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K., 2008).

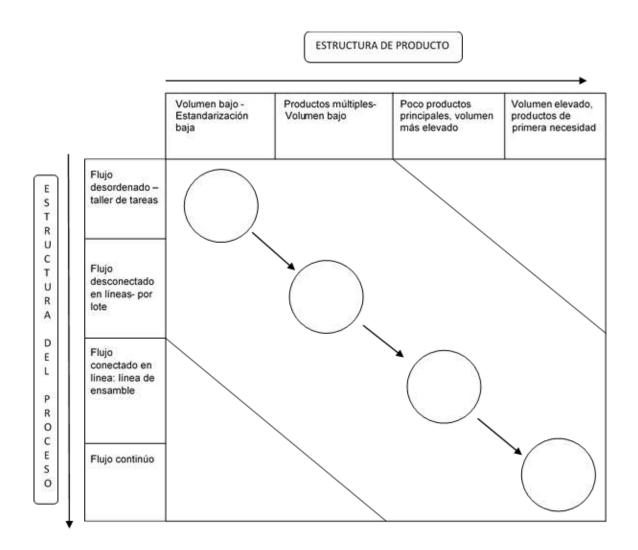


Figura 2: Matriz producto-proceso Fuente: Krajewsky 2008

La matriz representa las opciones estratégicas disponibles para las empresas en dos dimensiones, producto y proceso. El eje horizontal analiza el volumen relativo producido y el nivel de estandarización requerida; y el eje vertical analiza el tipo de estructuración del proceso.

Esta matriz establece una clasificación de procesos productivos, de acuerdo con el volumen de producción y la flexibilidad, en cuatro categorías de mayor a menor automatización: flujo continuo, flujo conectado en líneas (línea de ensamble),

flujo desconectado en líneas (por lote) y flujo desordenado. El grado de automatización estará en relación inversa con la flexibilidad.

La diagonal de la matriz representa el encuentro entre el producto y el proceso. Es probable que cualquier empresa que funcione fuera de la diagonal tenga el producto o el proceso equivocado para mantenerse competitivo.

2.13.1.3. Tiempo estándar

El tiempo estándar es el dato principal para determinar el número que se requiere de personas, de máquinas y de estaciones de manufactura para alcanzar la producción programada. Es el tiempo requerido para realizar una tarea u operación en una estación de manufactura con las 3 características siguientes (Stephens, M., & Meyers, F. E., 2006):

- Que el operador sea CALIFICADO; aquel que tiene la experiencia, las condiciones, y otras cualidades necesarias para efectuar el trabajo en curso sin normas satisfactorias de seguimiento, cantidad y calidad.
- Que trabaje a un ritmo normal: ni muy rápido, ni muy lento
- Que la tarea a realizar esté previamente definida.

2.13.1.4. Tiempo de procesamiento

La tasa de planta o tiempo de procesamiento es la tasa a la que deben fluir las operaciones, procesos, partes y/o componentes, con el fin de cumplir la meta de producción.

Para calcular el tiempo de procesamiento debe conocerse la meta de producción, la cantidad de tiempo asignado para producir las unidades y cualquier tiempo no productivo que sea tomado del de la producción, tal como descansos, necesidades fisiológicas, reuniones de grupo, almuerzos, contingencias, entre otros. Además, con objeto de calcular el tiempo de procesamiento, es necesario tener un conocimiento general de la productividad de la planta, como paros no planeados, falta de inventario, ausentismo, entre otros. Su cálculo se define a partir de la Ecuación 1.

$$Tiempo de procesamiento = \frac{Tiempo efectivo de producción}{Unidades requeridas}$$
(Ecuación 1)

El tiempo efectivo de producción resulta de restarle al tiempo asignado para producir el tiempo improductivo y multiplicar este valor por la productividad de la planta. Las unidades requeridas hacen referencia a la meta de producción de la empresa.

Establecer el tiempo de procesamiento para cada actividad es la clave para reunir todas las partes diferentes de todas las etapas de ensamblado, exactamente en el tiempo correcto (Stephens, M., & Meyers, F. E., 2006).

2.13.1.5. Calculo del número de maquinas

El tiempo estándar junto con la tasa de planta o tiempo de procesamiento son útiles para calcular la cantidad de equipos necesarios para llevar a cabo el ensamble del producto final. El número de máquinas necesarias resulta dividir el tiempo estándar por el tiempo de procesamiento, tal como se muestra en la Ecuación 2 (Stephens, M., & Meyers, F. E., 2006).

$$N\'{u}mero \ de \ m\'{a}quinas = \frac{Tiempo \ est\'{a}ndar}{Tiempo \ de \ procesamiento} \tag{Ecuación 2}$$

2.13.1.6. Análisis de flujo

El flujo de una parte es la trayectoria que ésta sigue mientras se mueve a través de la planta. El análisis de flujo no sólo considera la trayectoria que cada parte sigue por la planta, sino también trata de minimizar la distancia que viaja, los retrocesos, el tráfico cruzado y el costo de la producción (Stephens, M., & Meyers, F. E., 2006).

El análisis de flujo auxiliará al diseñador de instalaciones de manufactura en la selección del arreglo más eficaz de las máquinas, las instalaciones, las estaciones

de manufactura y los departamentos. Para realizar el análisis de flujo se utilizan las siguientes herramientas:

- Cursograma sinóptico
- Cursograma analítico
- Diagrama de recorrido

2.13.1.6.1. Cursograma sinóptico

El cursograma sinóptico es un diagrama que presenta un cuadro general de cómo suceden tan sólo las principales operaciones e inspecciones. Sólo se anotan las operaciones principales así como las inspecciones efectuadas para comprobar su resultado, sin tener en cuenta quién las ejecuta ni dónde se llevan a cabo. Para este cursograma son necesarios los símbolos correspondientes a operación e inspección, es decir, el círculo y el cuadrado respectivamente (Tabla 3)

Estos símbolos se grafican en líneas verticales indicando la sucesión de los hechos. Para numerar los símbolos se comienza por uno y sigue sin interrupción de un componente a otro partiendo de la derecha hasta el punto en que el segundo componente su une con el primero. La sucesión númerica pasa entonces al componente siguiente de la izquierda y sigue por la operación en que se unen los dos primeros componentes hasta el punto de montaje siguiente. La ensambladura de cualquier elemento al componente o mantaje principal se indica con una línea horizontal que va de la línea vertical de ese elemento secundario al lugar que corresponde en la sucesión de operaciones de la línea principal. (OIT, 1998)

2.13.1.6.2. Cursograma analítico

El cursograma analítico es un diagrama que muestra la trayectoria de un producto o procedimiento señalando todos los hechos sujetos a examen mediante el símbolo que corresponda. El cursograma analítico se establece en forma análoga al sinóptico, pero utilizando, además de los símbolos de operación e inspección, las de trasporte, espera y almacenamiento. Dichos símbolos se describen en la Tabla 3.

Símbolo	Denominación	Descripción
	Operación	Indica las principales fases del proceso, método o procedimiento
	Inspección	Indica la inspección de la calidad y/o la verificación de la cantidad
	Transporte	Indica el movimiento de los trabajadores, materiales y equipo de un lugar a otro
	Depósito provisional o espera	Indica demora en el desarrollo de los hechos
	Almacenamiento permanente	Indica depósito de un objeto bajo vigilancia en un almacén donde se lo recibe o entrega mediante alguna forma de autorización o donde se guarda con fines de referencia

Tabla 3: Símbolos utilizados en los Cursogramas Sinóptico y Analítico Fuente: Elaboración propia en base a OIT, 1998

El cursograma analítico abarca todas las operaciones e inspecciones descriptas en el cursograma sinóptico pero en forma más detallada; por esta razón el cursograma analítico se realiza a continuación del sinóptico (OIT, 1998).

Existen distintos tipos de cursogramas analíticos:

- Cursograma de operario: Diagrama en donde se registra lo que hace la persona que trabaja.
- Cursograma de material: Diagrama en donde se registra cómo se manipula o trata el material.
- Cursograma de equipo: diagrama en donde se registra cómo se usa el equipo.

2.13.1.6.3. Diagrama de recorrido

Para determinar el correcto diseño del layout de la planta modificada se utiliza el diagrama de recorrido. Esta herramienta se empela como complemento del cursograma analítico y es útil para analizar la disposición física de los sectores y equipos en el edificio de fabricación. Consiste en un esquema de distribución de planta en un plano a escala, que muestra donde son realizadas todas las actividades que forman parte del proceso productivo. La ruta de movimientos se señala por medio de líneas, cada actividad es identificada y localizada en el diagrama por el

símbolo correspondiente y numerada de acuerdo con el proceso productivo. Los símbolos utilizados en el diagrama son los presentados en el cursograma analítico (Stephens, M., & Meyers, F. E., 2006).

Este diagrama permite identificar factores como tráfico cruzado, retrocesos y distancia recorrida (OIT, 1998).

2.13.1.7. Distribución en planta

La distribución en planta implica la ordenación de espacios necesarios para movimiento de material, almacenamiento, equipos o líneas de producción, equipos industriales, administración y servicios para el personal. Una distribución en planta puede aplicarse en una instalación ya existente o en una en proyección.

Los objetivos de la distribución en planta son:

- Integración de todos los factores que afecten la distribución.
- Movimiento de material según distancias mínimas.
- Circulación del trabajo a través de la planta.
- Utilización "efectiva" de todo el espacio.
- Mínimo esfuerzo y seguridad en los trabajadores.
- Flexibilidad en la ordenación para facilitar reajustes o ampliaciones.

2.13.2. Manejo de materiales

Es la función que consiste en llevar el material correcto al lugar indicado en el momento exacto, en la cantidad apropiada, en secuencia y en posición o condición adecuada para minimizar los costos de producción.

El manejo de materiales se define como el movimiento de estos en el ambiente de manufactura, involucrando el empaque, movimiento y almacenamiento de sustancias en cualquier forma (Stephens, M., & Meyers, F. E., 2006).

El manejo de materiales puede concluirse en 5 dimensiones diferentes:

 Movimiento: Involucra el transporte real de material de un punto a otro.

- Cantidad: impone el tipo y la naturaleza del equipo para manejar el material y también el costo por unidad por la conveniencia de los bienes.
- Tiempo: determina la rapidez con la que el material se mueve a través de las instalaciones.
- Espacio: Relacionado con el espacio para almacenar y mover el equipo.
- Control: seguimiento del material, identificación positiva y administración del inventario.

El principal objetivo es reducir los costos unitarios de producción. Todos los demás objetivos se subordinan a este:

- Mantener y mejorar la calidad del producto, reducir los daños y velar por la protección de los materiales.
- 2. Alentar la seguridad y mejorar las condiciones de trabajo.
- 3. Aumentar la productividad en medio de:
- 4. Estimular el aumento en el uso de las instalaciones mediante:
 - Reducir el peso inútil.
 - Controlar el inventario.

2.14. Estudio económico

El estudio económico permite evaluar la factibilidad de llevar a cabo un proyecto y determinar la aceptación o rechazo del mismo. Para ello es necesario estimar la inversión total, los costos involucrados en la producción y la rentabilidad global de proyecto.

La inversión total es la cantidad de dinero necesaria para poner un proyecto en operación, ya sea de bienes industriales o servicios. Esta inversión resulta de la suma de la inversión fija, el costo del terreno y el capital de trabajo. Este último es el capital adicional con el que se debe contar para que comience a funcionar el proyecto, es decir, para financiar la producción antes de percibir ingresos por venta.

Para estimar la inversión fija se utiliza el método de los factores mediante el cual puede extrapolarse la inversión fija de un sistema completo, a partir del costo de los equipos principales del proceso con instalación, y determinar una estimación de la inversión fija con un error de 10-15% del valor real, a través de la selección cuidadosa de factores (Rudd, D. F., Watson, C. C., Sancho, J. L. S., & López, J. C., 1976).

Los costos de producción son los gastos involucrados en mantener un proyecto, operación o una pieza de un equipo de producción. Su estimación permite mostrar cuáles son los de mayor influencia sobre la rentabilidad. Los costos de producción incluyen costos variables que son proporcionales a la producción, costos fijos que son independientes del volumen de producción y costos semi-variables que no son ni fijos ni directamente proporcionales a la producción. Muchos de los costos se calculan en forma directa, como los costos de materias primas y envases, servicios, mano de obra, depreciación, seguros y financiación. Los costos de mantenimiento se estiman como un porcentaje de la inversión fija y hay otros costos que no se calculan directamente ni se estiman como un porcentaje de la inversión fija, estos son los costos de ventas y distribución y los de administración y dirección.

La información previamente descripta se utiliza para realizar el cuadro de fuente y usos de fondos, el cual se utiliza para evaluar la rentabilidad económica y muestra cuál es el origen o fuente de los fondos y cuál es su destino final. Mediante esta herramienta se obtienen los flujos de caja resultantes para cada año, y en base a ellos, se calcula la Tasa Interna de Retorno (TIR). Esta tasa indica la rentabilidad promedio anual que general el capital que permanece invertido en el proyecto. La tasa de retorno que se obtiene por este método es equivalente a la máxima tasa de interés que podría pagarse para obtener el dinero necesario para financiar la inversión y tenerla totalmente paga al final de la vida útil del proyecto.

Para finalizar el análisis se calcula el tiempo de repago que se define como el mínimo periodo de tiempo teóricamente necesario para recuperar la inversión fija depreciable en forma de flujo de caja del proyecto (Zugarramurdi, 2003).

SECCIÓN 2 24

SECCIÓN 3: DESARROLLO

CAPÍTULO 1: ESTUDIO DE MERCADO NACIONAL

3.1.1 Análisis 5 fuerzas de Porter

En la Figura 3 se muestra el esquema de las 5 fuerzas de Porter y luego se realiza un análisis que se desprende del mismo.

Figura 3: Esquema de las 5 fuerzas de Porter Fuente: Robbins & Coulter, 2010

Rivalidad entre los competidores existentes: la rivalidad entre los competidores dentro del segmento en cuestión es alta, debido a que estos son numerosos y se encuentran bien posicionados. Los principales competidores son Novatech, PC Arts y Depot Computers. La guerra de precios, las campañas publicitarias agresivas, y la entrada de nuevos productos resulta una amenaza constante.

Amenaza de competidores entrantes: En el caso particular de las empresas de productos informáticos, las barreras de entrada son elevadas. Esto se debe principalmente al costo elevado de la infraestructura necesaria para llevar a cabo la producción. La principal amenaza la conforman empresas del sector

informático que disponen de la tecnología de fabricación necesaria pero la utilizan en el ensamble de otros productos tales como teclados, placas de video, sonido, pen drive, entre otros.

Poder negociador de los proveedores: Grupo Núcleo cuenta con una amplia cartera de proveedores que reduce el poder de negociación de los mismos, ya que ante una disconformidad con los requisitos tales como precio, calidad, especificaciones, tiempo de entrega, se puede optar por un proveedor distinto ya sea nacional o extranjero.

Poder negociador de los clientes: dentro del rubro informático existen varios competidores que ofrecen productos similares, por lo que el poder de negociación de los clientes es alto. Esto significa que dispone de un gran número de opciones al momento de evaluar y efectuar una compra, basándose en factores como calidad, precio, marca, entre otros.

Amenaza de productos sustitutos: no existen en el mercado productos sustitutos para las memorias RAM ni para los *motherboards* ya que estas realizan funciones específicas dentro del ordenador que no pueden ser realizadas por otros productos.

3.1.2 Matriz de Perfil Competitivo

En la Tabla 4 se muestra la Matriz de perfil competitivo que tiene como objetivo identificar a los principales competidores de Grupo Núcleo, como así también sus fortalezas y debilidades específicas en relación con la posición estratégica de la empresa en estudio.

		Grupo Núcleo		Novatech		PC Arts		Depot Computers		
Factores de éxito	Peso	Calificación	Peso	Calificación	Peso	Calificación	Peso	Calificación	Peso	
Tactores de exito	F 630	Carricación	Ponderado	Carricacion	Ponderado	Carricación	Carricacion	Ponderado	Carricacion	Ponderado
Participación en el mercado	0,15	2	0,3	3	0,45	2	0,3	2	0,3	
Competitividad de precios	0,1	4	0,4	3	0,3	3	0,3	2	0,2	
Calidad de producto	0,2	3	0,6	3	0,6	2	0,4	3	0,6	
Productos de última generación	0,3	3	0,9	3	0,9	2	0,6	2	0,6	
Publicidad	0,05	3	0,15	2	0,1	1	0,05	1	0,05	
Atención personalizada	0,1	4	0,4	3	0,3	2	0,2	2	0,2	
Servicio post-venta	0,1	3	0,3	3	0,3	2	0,2	2	0,2	
TOTAL	1		3,05		2,95		2,05		2,15	

Como se puede observar en la matriz de perfil competitivo Grupo Núcleo es la empresa con mayor puntuación, seguida por Novatech. Esto se debe en gran parte a que cuenta con una alta puntuación en los factores de mayor peso (productos de última generación y calidad de producto) mientras que sus competidores, en cambio, tienen puntuaciones menores en estos aspectos.

Dado que Novatech tiene una puntuación muy cercana a la de Grupo Núcleo, se le recomienda a esta última potenciar sus fortalezas y trabajar sobre sus debilidades con el objetivo de mejorar su posición estratégica y diferenciarse aún más de sus competidores.

3.1.3 Análisis de la demanda

Para tener un panorama de la evolución del sector informático en lo referido a Memorias RAM, se analiza la demanda derivada de computadoras portátiles, tanto importadas como nacionales. Cabe destacar que cada equipo requiere una memoria RAM y un *motherboard*.

En la Tabla 5 se presenta la cantidad de unidades ingresadas al país por despachos aduaneros como también las unidades producidas a nivel local, cuyos valores están dados en miles de unidades (CAMOCA, 2014).

Año	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Equipos importados										
Computadoras portátiles	74	135	271	543	765	1324	816	535	1711	1185
All in One	0	0	0	7	16	99	361	263	172	54
Total Importados	74	135	271	550	781	1423	1177	798	1883	1239
Equipos Nacionales										
Computadoras portátiles	3	6	49	149	260	289	1638	1274	1338	2478

Tabla 5: Equipos importados y nacionales
Fuente: Elaboración propia en base a datos de CAMOCA, 2014

La irrupción en el mercado de "Fabricas de Tierra del Fuego", y la atención despertada por el Programa Conectar Igualdad ha dado como resultado un muy fuerte crecimiento de empresas interesadas en la producción de computadoras y por ende, el crecimiento de la producción nacional entre los años 2011 y 2014. En la

Tabla 6 puede observarse que el porcentaje de participación en el mercado de equipos nacionales se encuentra en crecimiento respecto a los equipos importados.

Año	Equipo Importados	Equipos Nacionales	%
Allo	(en miles de unidades)	(en miles de unidades)	70
2005	74	3	3,9
2006	135	6	4,3
2007	271	49	15,3
2008	550	149	21,3
2009	781	260	25,0
2010	1.423	289	16,9
2011	1.177	1.638	58,2
2012	798	1.274	61,5
2013	1.883	1.338	41,5
2014	1.239	2.478	66,7

Tabla 6: Participación de la manufactura Argentina en el mercado nacional Fuente: Elaboración propia en base a datos de CAMOCA, 2014

La Figura 4 muestra la evolución de equipos importados y nacionales entre los años 2005 y 2014. Se puede observar una tendencia creciente en ambas curvas, destacándose un importante crecimiento a partir del 2011 en los equipos nacionales, debido a políticas de promoción de la industria impulsadas por el gobierno, como por ejemplo, la puesta en marcha del Programa Conectar Igualdad. Si bien se observa una disminución de unidades en el año 2012, en los años siguientes continuó creciendo a ritmo sostenido.

El incremento en la producción nacional también se ve favorecida por una disminución de las importaciones debido a las restricciones de salida de divisas al exterior impuestas por el gobierno. Desde 2003 a 2011, el país registró una fase de crecimiento económico en gran parte debido a una política económica de dólar alto destinada a favorecer la sustitución de importaciones, que ha incrementado la competitividad de la industria argentina. Además, en los últimos años el gobierno implemento políticas económicas que promueven el consumo de la población. Políticas cómo "Ahora 12" favorecen claramente la demanda de productos como los que Grupo Núcleo comercializa.

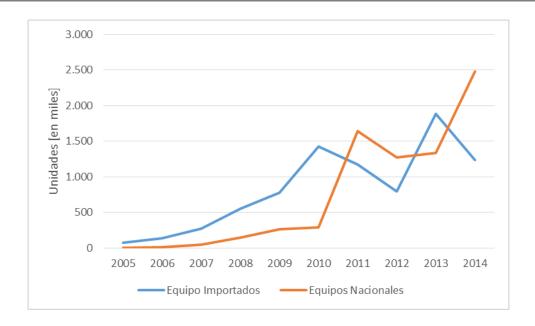


Figura 4: Evolución equipos importados y nacionales
Fuente: Elaboración propia en base a datos de CAMOCA,2014

Integración tecnológica en el Programa Conectar Igualdad

Conectar Igualdad es el Programa de incorporación de netbooks educativas de mayor alcance del mundo hasta el momento y con la mayor integración tecnológica del país que, no sólo impulsa la profesionalización de los procesos verticales de las empresas involucradas fabricantes de las netbooks, sino que genera un ecosistema industrial que potencia su desarrollo y crecimiento.

A su vez, al incluir la fabricación de un gran número de componentes como baterías, cargadores, cables, *motherboards*, placa receptora de TVD y plástico de los paneles para los equipos, el Programa impulsa e incentiva la industria nacional en todos sus niveles, directa e indirectamente, a la vez que permite una mayor orientación a la innovación, incrementar la inversión en investigación y equipamiento para aumentar la capacidad productiva.

Las empresas participantes del Programa Conectar Igualdad son: Air S.R.L., Coradir S.A., Corporate Corp. S.A., EXO S.A., G. y P. New Tree S.A., Grupo Nucleo S.A., ICAP S.A., Jukebox S.A., NEC Argentina S.A., New San S.A., Novatech Solutions S.A., PC Arts Argentina S.A., S.I.A.S.A. Soluciones Informáticas y Stylus S.A.

De esta manera, Conectar Igualdad, no sólo agrega calidad y productividad a toda la cadena de valor sino que genera nuevos puestos de trabajo y, en consecuencia, una mejora de la industria nacional.

3.1.4 Estimación de la demanda

A partir del análisis de la demanda anteriormente descripto, se procede a realizar el pronóstico de la demanda para los años 2015, 2016 y 2017. Se hará el análisis para dichos años ya que se considera que al cabo de tres años muchos de los equipos necesarios para el proceso productivo de memorias RAM y *motherboards* se encontrarán obsoletos debido a los avances tecnológicos. Es decir, el presente proyecto tiene un horizonte temporal de tres años.

Al tratarse de datos no estacionales, para realizar el pronóstico se utilizan los métodos ARIMA y otros del tipo no estacionales tales como Suavizado Exponencial Simple y Doble, Promedio Móvil Simple y Doble. Se selecciona el mejor método en base al que presenta menor error RMSE.

Para estimar la demanda, se utiliza el *software "Predictor"* de *Crystal Ball*. El informe generado se encuentra disponible en el Anexo I – Informe *Crystal Ball*. Del informe anterior se obtuvo como pronóstico de la demanda los siguientes resultados para los años 2015, 2016 y 2017 tanto para equipos importados (Tabla 7) como para equipos nacionales (Tabla 8).

Fecha	Inferior: 10%	Previsión	Superior: 90%
2015	743,27	1.192,16	1.641,06
2016	732,65	1.187,76	1.642,86
2017	586,17	1.185,95	1.785,73

Tabla 7: Previsión para equipos importados

Fuente: Elaboración propia

Fecha	Inferior: 10%	Previsión	Superior: 90%
2015	2.051,25	2.663,04	3.274,84
2016	2.450,78	3.181,59	3.912,40
2017	2.794,08	3.700,14	4.606,20

Tabla 8: Previsión equipos nacionales Fuente: Elaboración propia

En la Figura 5 se muestra la evolución de la demanda de equipos importados y nacionales entre los años 2005 y 2014, y la predicción para los próximos tres años. Se espera que la demanda de equipos nacionales aumente para los años 2015, 2016 y 2017 y que la de equipos importados se mantenga constante a través de dichos años. Esto proyección arroja resultados sumamente favorables para Grupo Núcleo ya que se espera que la demanda de sus productos crezca en los próximos años.

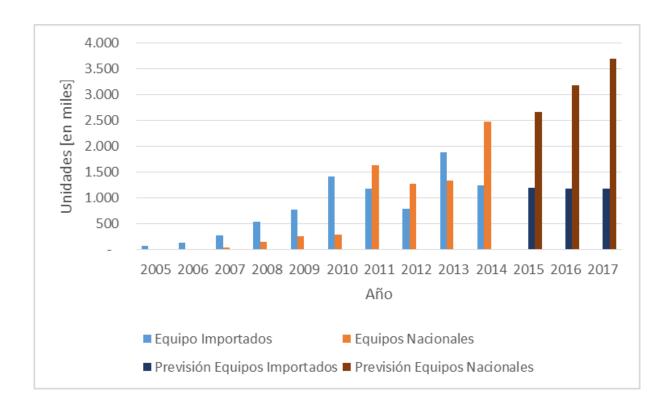


Figura 5: Previsión equipos importados y nacionales

Fuente: Elaboración propia

CAPÍTULO 2: SITUACIÓN ACTUAL

3.2.1. Descripción de la situación actual de la empresa

Para describir la situación actual por la que está atravesando la empresa se utilizan las herramientas que propone Fred David en su bibliografía "Proceso de Administración Estratégica" (David, 2003). El proceso planteado por David no obliga a la utilización de todas las herramientas o etapas, por lo tanto, se utilizarán las que de mejor adecuación al proyecto

El análisis está dividido en tres etapas, siendo la primera la correspondiente a recolección de información, la segunda la etapa de conciliación o ajuste y la última la de decisión. Para el desarrollo de la primer etapa se propone la utilización de las Matriz de Evaluación del Factor Externo y la del Factor Interno. Para la etapa de ajuste se utiliza la Matriz FODA y la Matriz Interna y Externa. Una vez recorridas estas tres etapas, se procede a la selección de la estrategia más conveniente, utilizando la Mariz de Ansoff.

3.2.1.1. Matriz de Evaluación del Factor Externo (MEFE)

En la Tabla 9 se presenta la Matriz de Evaluación del Factor Externo que ofrece un análisis del sector externo con el fin de detectar oportunidades que puedan beneficiar a la organización, como así también amenazas para poder protegerse de ellas.

FACTORES EXTERNOS	Peso	Calificación	Peso ponderado
Oportunidades			
Mercado potencial a nivel nacional muy importante que garantiza la posición competitiva y el crecimiento de la empresa en dicho mercado	0,2	4	0,8
Existencia de políticas de promoción de la industria impulsadas por el gobierno, como por ejemplo, la puesta en marcha del Programa Conectar Igualdad.	0,1	3	0,3
Inexistencia de productos sustitutos para las memorias RAM y para <i>motherboards</i> .	0,15	3	0,45
Altas barreras de entrada	0,1	2	0,2
Amenazas			
Existencia de empresas del sector informático que disponen de la tecnología de fabricación necesaria pero la utilizan en el ensamble de otros productos.	0,15	2	0,3
Alta rivalidad entre los competidores existentes a nivel nacional. Existe gran cantidad de competidores que se encuentran bien posicionados.	0,08	3	0,24
Constante innovación en el área tecnológica.	0,07	3	0,21
Situación económica y financiera del país inestable	0,15	2	0,3
TOTAL	1		2,8

Tabla 9: Matriz de Evaluación del Factor Externo
Fuente: Elaboración propia en base a datos de Grupo Núcleo

El resultado obtenido es de 2,8. Como dicho valor se encuentra por encima del promedio ponderado que es 2,5, podemos afirmar que la empresa responde favorablemente a las oportunidades y minimiza los efectos de las amenazas. De todos modos, es importante resaltar que el puntaje obtenido no supera por amplio margen al valor ponderado, por lo tanto, será necesario realizar seguimientos y monitoreos para asegurarse que la empresa siga respondiendo favorablemente a los factores externos.

3.2.1.2. Matriz de Evaluación del Factor Interno (MEFI)

En la Tabla 10 se presenta la Matriz de Evaluación del Factor Interno que ofrece un análisis del sector interno con el fin de identificar fortalezas y debilidades.

FACTORES INTERNOS	Peso	Calificación	Peso ponderado
Fortalezas			
Flexibilidad e integración funcional para responder rápida y satisfactoriamente a las exigencias tecnológicas del mercado	0,2	4	0,8
Disponibilidad de capital necesario para enfrentar futuras inversiones.	0,15	4	0,6
Gran experiencia y trayectoria en su negocio tradicional.	0,15	4	0,6
Productos de alta calidad	0,1	4	0,4
Gran conocimiento del proceso productivo.	0,1	3	0,3
Debilidades			
Escasa capacitación y programas de motivación del personal.	0,15	1	0,15
Cultura organizacional débil.	0,1	1	0,1
Muy baja incorporación de nuevos empleados capacitados y con nuevas ideas.	0,05	2	0,1
TOTAL	1		3,05

Tabla 10: Matriz de Evaluación del Factor Interno Fuente: Elaboración propia en base a datos de Grupo Núcleo

A partir de comunicación personal con los empleados de Grupo Núcleo se concluye que la empresa tiene una cultura organizacional débil. Los empleados no poseen un sentido de identidad con la organización ni se sienten comprometidos con su labor diario. Carecen de un sistema de propósitos compartidos y creencias comunes. Grupo Núcleo en una empresa mediana en la existe poca conexión entre los valores compartidos y el comportamiento.

El resultado obtenido es de 3,05. Como dicho valor se encuentra por encima del promedio ponderado que es 2,5, podemos afirmar que la empresa tiene una posición interna fuerte, es decir, capitaliza y potencia las fortalezas y minimiza las debilidades.

3.2.1.3. Matriz FODA

La Tabla 11 muestra la Matriz FODA en la se describen la Fortalezas, Oportunidades, Debilidades y Amenazas que presenta la empresa; y luego las líneas de acción que se desprenden a partir de dicho análisis. Las líneas de acción orientan la dinámica de la empresa en la dirección adecuada para favorecer la implementación de la estrategia elegida.

FORTALEZAS: F

- 1. Flexibilidad e integración funcional para responder rápida y satisfactoriamente a las exigencias tecnológicas del mercado.
- 2. Disponibilidad de capital necesario para enfrentar inversiones
- 3. Gran experiencia y trayectoria en su negocio tradicional
- 4. Productos de alta calidad
- 5. Gran conocimiento del proceso productivo

DEBILIDADES: D

- 1. Escasa capacitación y programas de motivación del personal.
- 2. Cultura organizacional débil.
- 3. Muy baja incorporación de nuevos empleados capacitados y con nuevas ideas.

OPORTUNIDADES: 0

- 1. Mercado potencial a nivel nacional muy importante que garantiza la posición competitiva y el crecimiento de la empresa en dicho mercado.
- 2. Existencia de políticas de promoción de la industria impulsadas por el gobierno, como por ejemplo, la puesta en marcha del Programa Conectar Igualdad.
- 3. Inexistencia de productos sustitutos para las memorias RAM y para motherboards.
- 4. Altas barreras de entrada

ESTRATEGIAS: FO

- 1. Utilizar la experiencia en el negocio y la disponibilidad de capital para aprovechar las políticas de promoción industrial y para crecer en el mercado mediante la elaboración de nuevos productos.
- 2. Aprovechar la flexibilidad para responder rápidamente a los cambios del mercado nacional en crecimiento.

ESTRATEGIAS: DO

- 1. Aprovechar la oportunidad de crecimiento que presenta el mercado nacional generando una posición competitiva a partir de la capacitación y motivación del personal.
- 2. Basarse en la inexistencia de productos sustitutos y en las altas barreras de entrada para crecer en el mercado nacional.

AMENAZAS: A

- 1. Existencia de empresas del sector informático que disponen de la tecnología de fabricación necesaria pero la utilizan en el ensamble de otros productos.
- 2. Alta rivalidad entre los competidores existentes a nivel nacional. Existe gran cantidad de competidores que se encuentran bien posicionados.
- 3. Constante innovación en el área tecnológica.
- 4. Situación económica y financiera del país inestable

ESTRATEGIAS: FA

- 1. Aprovechar la experiencia en el negocio junto con la flexibilidad para adaptarse a los cambios y la disponibilidad de capital, para hacer frente a los competidores a nivel nacional, como así también a los potenciales competidores.
- 2. Potenciar las fortalezas para dar respuesta a la constante innovación en el área tecnológica y para hacer frente a la inestabilidad económica del país.

ESTRATEGIAS: DA

1. Intensificar la capacitación y los programas de motivación del personal para hacer frente a las amenazas que presenta el entorno.

Tabla 11: Matriz FODA

Fuente: Elaboración propia en base a datos de Grupo Núcleo

3.2.1.4. Matriz Interna y Externa

En base a los resultados obtenidos en la Matriz de Evaluación del Factor Externo (Tabla 9) y la del Factor Interno (Tabla 10), se confecciona la Matriz Interna y Externa la cual siguiere diferentes estrategias dependiendo la región en la que se encuentra la organización. En la Figura 6 se presenta la Matriz Interna y Externa.

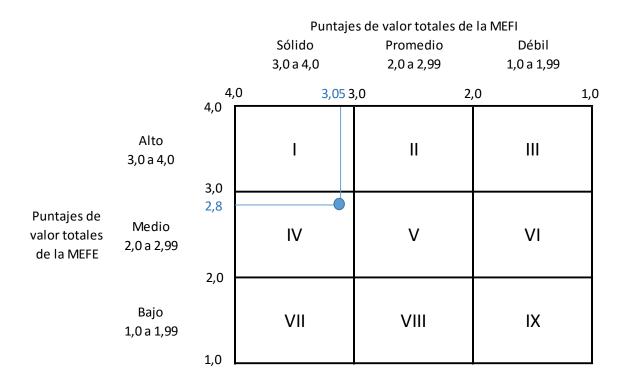


Figura 6: Matriz Interna y Externa
Fuente: Elaboración propia en base a datos de Grupo Núcleo

Tal como se observa en la Figura 6, la empresa se encuentra posicionada en el cuadrante IV. Las estrategias recomendadas para este cuadrante son penetración de mercado, desarrollo de mercado y desarrollo de producto

3.2.1.5. Matriz de Planeación Estratégica Cuantitativa (MPEC)

Teniendo en cuenta la información relevada se procede a elegir la estrategia más conveniente para Grupo Núcleo, para ello se utiliza la Matriz de Planeación Estratégica Cuantitativa (Tabla 12). Para su confección se utilizan los factores claves internos y externos descriptos en la Matriz de Evaluación del Factor Externo (Tabla 9) y la del Factor Interno (Tabla 10).

		nuevo P	ollo de roducto rboard)	Penetración de mercado	
FACTORES CLAVE	Valor	PA	PTA	PA	PTA
Oportunidades					
Mercado potencial a nivel nacional muy importante que garantiza la posición competitiva y el crecimiento de la empresa en dicho mercado		4	0,8	4	0,8
Existencia de políticas de promoción de la industria impulsadas por el gobierno, como por ejemplo, la puesta en marcha del Programa Conectar Igualdad.	0,1	4	0,4	4	0,4
Inexistencia de productos sustitutos para las memorias RAM y para <i>motherboards</i> .	0,15	4	0,6	3	0,45
Altas barreras de entrada	0,1	4	0,4	3	0,3
Amenazas					
Existencia de empresas del sector informático que disponen de la tecnología de fabricación necesaria pero la utilizan en el ensamble de otros productos.	0,15	2	0,3	1	0,15
Alta rivalidad entre los competidores existentes a nivel nacional. Existe gran cantidad de competidores que se encuentran bien posicionados.	0,08	3	0,24	1	0,08
Constante innovación en el área tecnológica.	0,07	3	0,21	1	0,07
Situación económica y financiera del país inestable	0,15	2	0,3	2	0,3
Fortalezas		•			•
Flexibilidad e integración funcional para responder rápida y satisfactoriamente a las exigencias tecnológicas del mercado	0,2	4	0,8	2	0,4
Disponibilidad de capital necesario para enfrentar futuras inversiones.	0,15	4	0,6	2	0,3
Gran experiencia y trayectoria en su negocio tradicional.	0,15	3	0,45	3	0,45
Productos de alta calidad	0,1	3	0,3	3	0,3
Gran conocimiento del proceso productivo.	0,1	3	0,3	2	0,2
Debilidades					
Escasa capacitación y programas de motivación del personal.		3	0,45	2	0,3
Cultura organizacional débil.	0,1	2	0,2	2	0,2
Muy baja incorporación de nuevos empleados capacitados y con nuevas ideas.	0,05	4	0,2	1	0,05
Suma del puntaje del grado de atracción			6,55		4,75

Tabla 12: Matriz de Planeación Estratégica Cuantitativa Fuente: Elaboración propia en base a datos de Grupo Núcleo

Tal como se observa en la Tabla 12, la estrategia más atractiva y conveniente consiste en el desarrollo de un nuevo producto, en nuestro caso, el *Motherboard*.

3.2.1.6. Matriz de Ansoff

La Figura 7 muestra la Matriz de Ansoff en la que se observa que la estrategia a desarrollar por la empresa es el desarrollo de productos. Si bien hasta el momento Grupo Núcleo ha perseguido una estrategia de penetración de mercado, la puesta en marcha del presente proyecto implica una nueva estrategia, la de desarrollo de producto ya que se incorporará un nuevo producto (*motherboard*) con el fin de aumentar la participación de mercado. De este modo la estrategia a seguir es consistente con los resultados obtenidos en la Matriz Interna y Externa y en la Matriz de Planeación Estratégica Competitiva.

		PRODU	стоѕ
		EXISTENTES	NUEVOS
	EXISTENTES	Penetración de mercado	Desarrollo de productos
MERCADOS	NUEVOS	Desarrollo de mercados	Diversificación

Figura 7: Matriz de Ansoff Fuente: Elaboración propia

3.2.2. Descripción del producto: Memoria RAM

La memoria de acceso aleatorio (RAM) se utiliza como memoria de trabajo para el sistema operativo, los programas y la mayor parte del software. En la RAM se cargan todas las instrucciones que ejecutan la unidad central de procesamiento (procesador) y otras unidades de cómputo. Se denominan "de acceso aleatorio" porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder (acceso secuencial) a la información de la manera más rápida posible.

De los diferentes tipos de memorias existentes, en Grupo Núcleo se ensamblan únicamente las del tipo SODIMM y UDIMM, las cuales son utilizadas en las netbooks, notebooks, "all in one" (AIO) y en las PC's respectivamente. La

principal diferencia entre ellas es el tamaño, la cantidad de componentes y de muescas.

La mayor parte de las memorias ensambladas, tanto SODIMM como UDIMM se utilizan dentro de la empresa como componentes para la obtención de los productos terminados. El resto de las memorias, se comercializan en blísteres plásticos antiestáticos. En la Figura 8 y Figura 9 se observa una memoria del tipo SODIMM y UDIMM respectivamente y en la Figura 10 los blísteres.

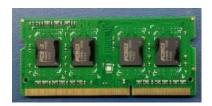


Figura 8: Memoria SODIMM
Fuente: Grupo Núcleo

Figura 9: Memoria UDIMM Fuente: Grupo Núcleo

Figura 10: Blíster plástico antiestático Fuente: Grupo Núcleo

3.2.3. Descripción del proceso productivo

3.2.3.1. Diagrama de Flujo

En la Figura 11 se presenta el diagrama de flujo del proceso productivo de las memorias RAM. En él se mencionan las principales etapas implicadas en dicho proceso.

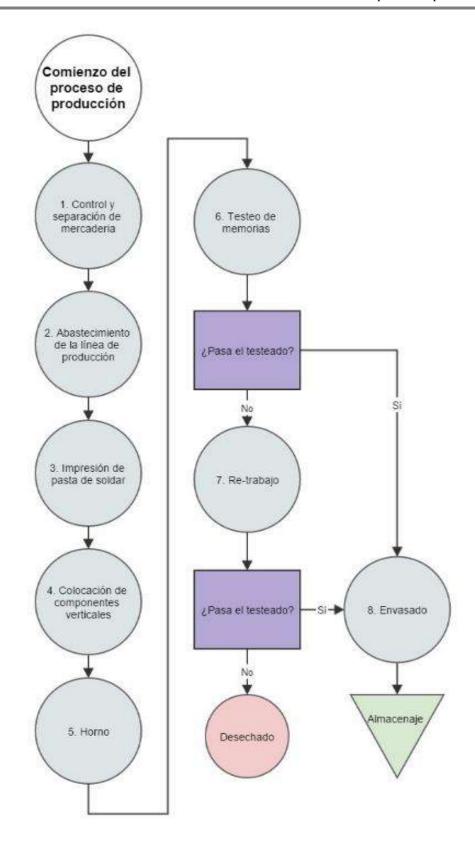


Figura 11: Diagrama de Flujo
Fuente: Elaboración propia en base a datos de Grupo Núcleo

3.2.3.2. Descripción de las etapas del proceso

Se describen las principales etapas implicadas en el ensamble de las memorias RAM tanto SODIMM como UDIMM.

- 1. Control y separación de mercadería: Una vez recibida la materia prima en pallets, se verifica que coincida con la orden de pedido y se controla el estado de las mismas. Luego, se realiza la separación de la mercadería ordenando los componentes según el equipo en donde vayan a ser utilizados. Para ello se dispone de varas metálicas adheridas a la pared y se cuelgan los rollos de componentes en las mismas.
- 2. <u>Abastecimiento de toda la línea de producción</u>: Los componentes se compran en rollos los cuales se colocan en los *feeders*² de cada equipo de manera que los mismos se encuentren en condiciones de iniciar la producción.
- 3. <u>Impresión de pasta de soldar</u>: Se inicia el proceso productivo con el ingreso de las placas a la impresora de pasta de soldar (Printer Momentum MPM). Dicho ingreso se realiza a través de la utilización de un equipo llamado *Loader*³, el cual toma las placas y las ingresa a la impresora. Mediante la utilización de un dispenser, se inyecta la pasta en las cavidades de la placa donde más adelante se depositan los componentes a ensamblar. Esta impresora dispone de un software mediante el cual se regulan los parámetros importantes para el correcto funcionamiento del proceso.

El pasaje de las placas de un equipo a otro se realiza a través de un equipo llamado *Conveyor*⁴, el cual funciona como una pequeña cinta trasportadora que conecta dos equipos.

4. Colocación de componentes: Se colocan los componentes en las placas que ya poseen la pasta de soldar en las cavidades mediante equipos que toman el componente por medio del efecto Venturi y lo posicionan sobre la pasta de soldar. Dicho efecto consiste en que el aire en movimiento dentro de un conducto cerrado disminuye su presión cuando aumenta la velocidad al pasar

² Soporte metálico que posee gran parte de los equipos utilizados para llevar a cabo tareas de montaje superficial. En los feeders se coloca un rollo plástico que posee los componentes a ser ensamblados.

³ Equipo que mediante su funcionamiento permite el ingreso de las placas a la línea de ensamble.

⁴ Equipo que se conecta entre otros dos y posee una cinta trasportadora para el pasaje de los componentes.

- por una zona de sección menor. Como el aumento de velocidad es muy grande, se llegan a producir presiones negativas, y entonces, se produce una aspiración del aire de este conducto, que permite levantar los componentes.
- 5. <u>Cocción</u>: Las placas con los respectivos componentes ingresan al horno. En primer lugar atraviesan un sector a elevada temperatura, donde la pasta de soldar se funde parcialmente. Luego, pasan por un sector a temperatura inferior, permitiendo la adherencia definitiva del componente a la placa.
- 6. <u>Testeo</u>: En esta etapa se llevan a cabo dos tipos de test, uno que es de corta duración y se aplica a todas las memorias ensambladas y otro completo, de larga duración. Este último es mucho más complejo que el anterior y se realiza únicamente sobre un 5% del lote total de producción.
- 7. Re-trabajo: Aquellos productos que no hayan pasado correctamente la etapa de testeo, pasan a la de re-trabajo, donde se realiza un trabajo manual sobre los mismos destinado a reparar la falla. Una vez terminado, vuelven a ser testeados. Aquellos que no pasen este test son desechados, mientras que los que sí lo hagan avanzan a la etapa de envasado.
- 8. <u>Envasado:</u> Las memorias RAM son envasadas manualmente en blísteres plásticos antiestáticos de 50 unidades cada uno.
- 9. <u>Almacenaje</u>: Todos los productos son almacenados en un sector de producto terminado.

La información fue obtenida a partir de comunicación personal con el responsable del área de SMT de Grupo Núcleo.

3.2.3.3. Especificación de equipos principales

Los equipos necesarios para llevar a cabo el ensamble de memorias RAM se muestran en la Figura 12, Figura 13, Figura 14, Figura 15, Figura 16, Figura 17 y Figura 18, con sus respectivas especificaciones que se detallan en la Tabla 13, Tabla 14, Tabla 15, Tabla 16, Tabla 17, Tabla 18 y Tabla 19, respectivamente.

Printer Momentum MPM

Figura 12: Printer Momentum MPM

Características principales

	Precio	US\$ 823.000		
Dimensiones	Alto	1638,4 mm		
	Ancho	1202,7 mm		
	Profundidad	1593,1 mm		
Parámetros de impresión	Área máx. de impresión	609,6 mm x 508 mm		
	Velocidad de impresión	305 mm/s		
Consumo	Energía	26,4 kW		
Consumo	Aire	510 l/minuto (Máximo)		
Función dentro del proceso productivo Inyectar la pasta en las cavidades de la placa donde más adelante se depositan los componer a ensamblar.				

Tabla 13: Características principales Printer Momentum MPM
Fuente: Grupo Núcleo

KE 2080

Figura 13: KE 2080

Características principales

	Precio	US\$ 393.000		
Dimensiones	Alto	1440 mm		
	Ancho	1500 mm		
	Profundidad	1500 mm		
Parámetros	Chips colocados por hora	20200 CPH		
Canauma	Energía	14,4 kW		
Consumo	Aire	150 l/minuto (Máximo)		
Función dentro del proceso productivo	Colocar los componentes en las placas que ya poseen la pasta de soldar en las cavidades			

Tabla 14: Características principales KE 2080 Fuente: Grupo Núcleo

MTS

Figura 14: MTS

Características principales

	Precio	US\$ 56.000		
Dimensiones	Alto	1900 mm		
	Ancho	1000 mm		
	Profundidad	1550 mm		
Parámetros	Chips colocados por hora	20200 CPH		
Consumo	Energía	14,4 kW		
Consumo	Aire	150l/minuto (Máximo)		
Función dentro del proceso productivo	Colocar los componentes en las placas que ya poseen la pasta de soldar en las cavidades			

Tabla 15: Características principales MTS
Fuente: Grupo Núcleo

Horno Reflow

Figura 15: Horno Reflow

Características principales				
	Precio	US\$ 112.000		
Dimensiones	Alto	1241 mm		
	Ancho	1367 mm		
	Profundidad	6439 mm		
Parámetros	Temperatura	350°C		
Consumo	Energía	84 kW		
	Aire	550 l/minuto (Máximo)		
Función dentro del proceso productivo	La pasta de soldar se funde permitiendo la adherencia definitiva del componente a la placa.			

Tabla 16: Características principales Horno Reflow Fuente: Grupo Núcleo

SP 3000

Figura 16: SP 3000

Características principales

	Precio	US\$ 10.000	
Dimensiones	Alto	1300 mm	
	Ancho	1000 mm	
	Profundidad	500 mm	
Parámetros	Test exprés	7 minuto/u	
	Test completo	30 minuto/u	
Consumo	Energía	2,4 kW	
Función dentro del proceso productivo	,		

Tabla 17: Características principales SP 3000 Fuente: Grupo Núcleo

Loader / Unloader

Figura 17: Loader / Unloader

Características principales

	Precio	US\$ 17.000	
Dimensiones	Alto	1000 mm	
	Ancho	1000 mm	
	Profundidad	500 mm	
Función dentro del proceso productivo	El Loader permite el ingreso de las placas a la impresora, mientras que el Unloader permite extraer las placas a la salida del horno.		

Tabla 18: Características principales Loader / Unloader Fuente: Grupo Núcleo

Conveyor

Figura 18: Conveyor

Características principales Precio US\$ 12.000 Alto 1000 mm Ancho 1000 mm Profundidad Función dentro del proceso productivo Permitir el pasaje de las placas de un equipo a otro.

Tabla 19: Características principales Conveyor Fuente: Grupo Núcleo

3.2.3.4. Distribución en planta

La Figura 19 muestra la distribución de la planta de SMT de Grupo Núcleo. En el mismo se observa la línea de ensamble de memorias RAM, como así también la distribución de todos los equipos y elementos necesarios en dicho proceso productivo.

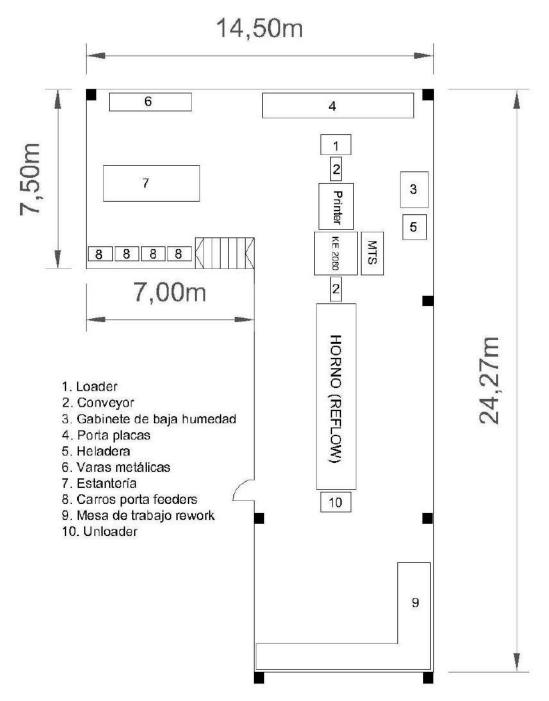


Figura 19: Distribución en planta
Fuente: Elaboración propia en base a observación in situ

Se observa que la línea de ensamble de las memorias RAM comienza con un equipo llamado Loader y finaliza con el Unloader, los mismos facilitan el ingreso y egreso de las placas respectivamente. La línea cuenta con dos Conveyor los cuales permiten el pasaje de las placas entre un equipo y el otro. El resto de los equipos implicados en el proceso productivo han sido descriptos previamente.

La mesa de trabajo de rework conserva el flujo lineal del proceso productivo. La estantería señalizada con el número 7 se utiliza para almacenar el producto terminado. La ubicación de la misma no respeta el flujo lineal, por lo que los operarios se tienen que trasladar reiteradas veces para depositar los blísteres plásticos en dicha estantería.

El gabinete de baja humedad contiene componentes sumamente sensibles a la humedad, por lo que son almacenados en dicho gabinete para garantizar su buen funcionamiento. Las placas a ser ensambladas se colocan en una estructura metálica llamada porta placas. En cuanto a la heladera, ésta se utiliza para almacenar la pasta de soldar.

Las varas metálicas se utilizan para almacenar los rollos de componentes, los cuales se clasifican según el equipo en los que son utilizados. La planta SMT cuenta con 8 carros porta feeders, 4 de ellos son utilizados en la línea de producción y los 4 restantes se dejan cargados con los rollos de componentes y se utilizan cuando los carros que están siendo utilizados se vacían.

3.2.4. Nivel de Producción

En la Tabla 20 se detalla la producción mensual de memorias RAM entre los años 2011 y febrero de 2015. La planta de SMT comenzó a producir en diciembre de 2011.

Producción Memorias [u]					
Mes	2011	2012	2013	2014	2015
Enero		4.000	12.400	9.116	9.250
Febrero	SIN SMT	-	618	2.500	12.160
Marzo		4.500	8.400	3.600	
Abril		750	8.900	10.620	
Mayo		4.106	6.375	12.180	
Junio		15.825	18.150	7.625	
Julio		7.850	11.600	14.400	
Agosto		11.240	13.272	14.143	
Septiembre		3.500	12.800	10.605	
Octubre		5.400	15.000	12.470	
Noviembre		4.240	-	14.000	
Diciembre	12.155	3.300	15.795	-	
Totales	12.155	64.711	123.310	111.259	21.410

Tabla 20: Producción mensual memorias RAM
Fuente: Elaboración propia en base a datos de Grupo Núcleo

La Figura 20 muestra la producción anual de memorias RAM para los años 2012, 2013 y 2014. Como se puede observar, la producción ha aumentado un 90,6% en el año 2013 y disminuyó un 9,8% en el año siguiente, alcanzando una producción anual para el año 2014 de 111.259 unidades.

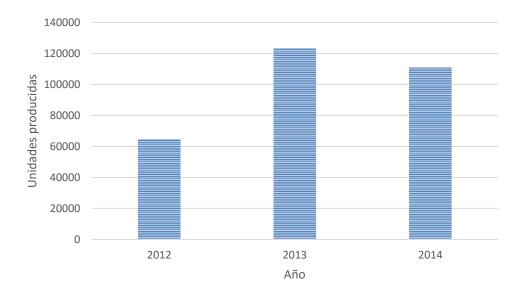


Figura 20: Producción anual memorias RAM
Fuente: Elaboración propia en base a datos de Grupo Núcleo

En la Figura 21 se observa la producción del primer bimestre de los últimos 4 años. Entre los años 2012 y 2013 la producción aumentó un 225%, luego se mantuvo relativamente constante en el 2014 y experimentó un aumento del 84% en el primer bimestre del presente año. Teniendo en cuenta el comportamiento anteriormente descripto se espera que la producción anual de memorias RAM para el año 2015 sea aún mayor que la del 2014.

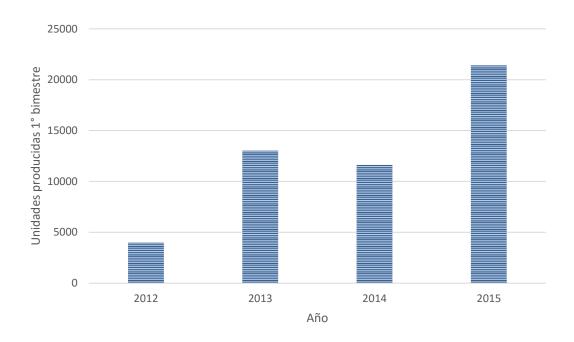


Figura 21: Producción 1° bimestre
Fuente: Elaboración propia en base a datos de Grupo Núcleo

La capacidad máxima de producción de Grupo Núcleo es de 20.000 memorias RAM mensualmente. Teniendo en cuenta los valores de producción de la Tabla 20 se calculó el porcentaje de la capacidad de producción utilizada mensualmente a lo largo de los años y el promedio anual de dichos valores. Estos resultados se pueden observar en la Tabla 21.

Mes	2011	2012	2013	2014	2015
Enero		20,0	62,0	45,6	46,3
Febrero		-	3,1	12,5	60,8
Marzo	SIN SMT	22,5	42,0	18,0	
Abril		3,8	44,5	53,1	
Mayo		20,5	31,9	60,9	
Junio		79,1	90,8	38,1	
Julio		39,3	58,0	72,0	
Agosto		56,2	66,4	70,7	
Septiembre		17,5	64,0	53,0	
Octubre		27,0	75,0	62,4	
Noviembre		21,2	-	70,0	
Diciembre	60,8	16,5	79,0	-	
Promedio	60,8	27,0	51,4	46,4	53,5
anual	00,8	27,0	51,4	40,4	55,5

Tabla 21: Porcentaje de la capacidad de producción utilizada Fuente: Elaboración propia en base a datos de Grupo Núcleo

Como se puede observar en la Tabla 21, la empresa, funcionando 44 horas semanales, está trabajando por debajo de la capacidad máxima de producción. En 2014 trabajó al 46,4% de la capacidad máxima instalada con lo cual dispone de capacidad ociosa para elaborar una mayor cantidad de memorias RAM mensualmente, o bien, para introducir el ensamble de *motherboards* en dicha planta.

CAPÍTULO 3: SITUACIÓN MODIFICADA: AMPLIACIÓN DE LA PLANTA

Grupo Núcleo firmó en el año 2014 el acuerdo Conectar Igualdad iniciando un periodo de grandes transformaciones en la empresa no sólo productivas, sino también edilicias. La producción de memorias RAM aumentó en los últimos años al mismo tiempo que se vislumbró la oportunidad de comenzar a ensamblar *motherboards* en la misma planta de SMT, para abastecer a dicho plan y para ser utilizado como producto intermedio en el ensamble de notebooks, netbooks y all in one, producidas en Grupo Núcleo.

Se estudiará la factibilidad del proyecto con el fin de incorporar el ensamble de *motherboards* a la actual planta de SMT. No sólo se analizará la factibilidad económica, sino también la necesidad de modificar el Layout en planta.

En primera instancia, se describirá el nuevo producto y el proceso productivo, luego se estimará la cantidad de *motherboards* a producir mensualmente, en base al análisis del mercado realizado en el capítulo 1, para luego determinar las necesidades de equipamiento y la modificación del layout en planta.

3.3.1. Descripción del producto incorporado: Motherboard

El *motherboard* o, en castellano, placa base (Figura 22) es una tarjeta de circuito impreso a la que se conectan los componentes que constituyen la computadora.

Es una parte fundamental para armar cualquier computadora personal, de escritorio o portátil. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el circuito integrado auxiliar (chipset), que sirve como centro de conexión entre el microprocesador (CPU), la memoria de acceso aleatorio (RAM), las ranuras de expansión y otros dispositivos.

La placa madre, además incluye un sistema que le permite realizar las funcionalidades básicas, como pruebas de los dispositivos, vídeo y manejo del teclado, reconocimiento de dispositivos y carga del sistema operativo.

La dimensiones del *motherboard* son de 14 cm x 13 cm aproximadamente El producto se comercializa en una bolsa plástica antiestática (Figura 23), la cual es útil para transportar productos sensibles a la electricidad.

La totalidad de los *motherboards* se utilizan dentro de la empresa como componentes para la obtención de los productos terminados ya sea netbooks, notebooks y all in one.

Figura 22: Motherboard

Figura 23: Bolsa plástica antiestática

3.3.2. Descripción del proceso productivo de Motherboards

3.3.2.1. Descripción de las etapas del proceso

Se describen las 4 etapas implicadas en el ensamble de *motherboards* que difieren de las descriptas para las memorias RAM. La información fue obtenida a partir de comunicación personal con el responsable del área de SMT de Grupo Núcleo.

1. Control de pasta de soldar: El equipo denominado SPI realiza una inspección a través de la utilización de una cámara y proyectores de luz. Esta determina si la cantidad de pasta de soldar está dentro de los límites de tolerancia. Si no es así, interviene un operario y realiza la limpieza manual del sobrante de pasta, utilizando una pistola de aire comprimido, la cual es un accesorio de dicho equipo

- Colocación de componentes horizontales: Los componentes se encuentran en bandeja por lo que es necesario que los mismos sean colocados de forma horizontal, en lugar de vertical como en el ensamble de memorias RAM.
- 3. <u>Despanelizado (Router):</u> La placa que ingresa al proceso incluye dos unidades de producto que deben ser separadas por este equipo. Esto se realiza mediante una herramienta de corte, la cual tiene previamente cargado, a través de un software, el camino a recorrer.
- 4. <u>Testeado:</u> El testeado de los *motherboards* se realiza mediante un software que verifica la integridad de los mismos.

3.3.2.2. Análisis de la estrategia de flujo

Con el fin de determinar la estrategia de flujo que se debe adoptar en la planta de SMT de Grupo Núcleo se utiliza la matriz producto-proceso (Figura 24). A partir de la misma se buscará identificar las características del producto-proceso y en función de eso determinar la orientación de la distribución.

Para el caso particular de la planta de SMT de Grupo Núcleo, se ensamblan dos productos principales, Memorias RAM y *motherboards*; se trata de productos altamente estandarizados cuyos volúmenes son elevados, 1816 y 272 unidades respectivamente por turno de 8 horas. Analizando el diseño del producto resulta de pocos productos principales que se elaboran en volúmenes elevados.

En cuanto a la dimensión del proceso, se trata de un flujo conectado en línea (línea de ensamble), en el que los equipos se sitúan donde es necesario con el fin de eliminar el movimiento excesivo.

La ubicación dentro de la matriz para la planta de SMT de Grupo Núcleo se encuentra señalizada con color azul, dando como resultado una estrategia de flujo lineal en la que la trayectoria de los productos es fija, los procesos tienden a estar más automatizados y producen productos estandarizados.

Se puede concluir que la distribución en planta debe estar orientada al producto.

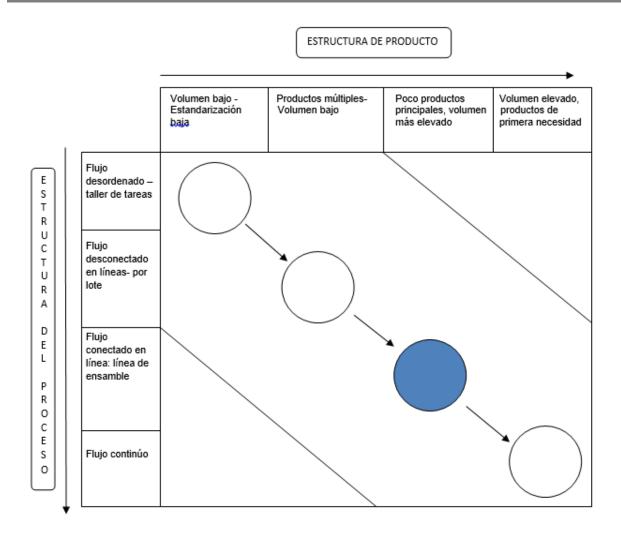


Figura 24: Matriz producto-proceso Fuente: Elaboración propia

3.3.2.3. Especificación de equipos principales

Para llevar a cabo el ensamble de *motherboards* se utilizan los equipos del proceso productivo de memorias RAM y además es necesario adquirir tres equipos nuevos que se muestran en la Figura 25, Figura 26 y Figura 27; y cuyas especificaciones se describen en la Tabla 22, Tabla 23 y Tabla 24 respectivamente.

SPI KY8030

Figura 25: SPI KY8030

Características pri	ncipales				
	Precio	US\$ 131.969			
	Alto	1950 mm			
Dimensiones	Ancho	1000 mm			
	Profundidad	1604 mm			
Parámetros	Área de inspección	35,3 mm x 25,9 mm			
	Tiempo necesario por área de inspección	0,31 s			
Consumo	Energía	26,4 kW			
Consumo	Aire	250 l/minuto (Máximo)			
Función dentro del proceso productivo	Controlar que la cantidad de pasta de soldar se encuentre dentro de los límites de tolerancia exigidos.				

Tabla 22: Características principales SPI KY8030 Fuente: Grupo Núcleo

FX3 Chip Shooter

Figura 26: FX3 Chip Shooter

Características principales

	Precio	US\$ 727.000			
	Alto	1530 mm			
Dimensiones	Ancho	2880 mm			
	Profundidad	1850 mm			
Parámetros	CPH (Chips colocados por hora)	90000 CPH			
Consumo	Energía	14,4 kW			
Consumo	Aire 150 l/minuto (Máxi				
Función dentro del proceso productivo	Colocar los componentes sobre las placas en forma horizontal.				

Tabla 23: Características principales FX3 Chip Shooter Fuente: Grupo Núcleo

Router

Figura 27: Router

Características principales

	Precio	US\$ 120.000			
	Alto	1440 mm			
Dimensiones	Ancho	1500 mm			
	Profundidad	2000 mm			
Parámetros	Velocidad de corte	30 mm/min			
Canauma	Energía	2,4 kW			
Consumo	Aire	100 l/h			
Función dentro del proceso productivo	Separar las dos placas a través de una herramienta de corte.				

Tabla 24: Características principales Router Fuente: Grupo Núcleo

Cada unidad de memoria RAM contiene 145 componentes mientras que cada *motherbord* requiere 241 componentes. Esta diferencia hace que sea necesario invertir, además de los tres equipos descriptos anteriormente, en 96 *feeders* que son los soportes metálicos utilizados en los equipos FX3 Y KE 2080 en los que se coloca un rollo plástico que posee los componentes a ser ensamblados. El costo de dichos *feeders* es de US\$ 136.000. Esta información fue obtenida a partir de comunicación personal con el responsable del área de SMT de Grupo Núcleo.

3.3.2.4. Diseño de la nueva distribución en planta

A partir de la decisión de Grupo Núcleo de modificar y ampliar la planta de SMT se decide ensamblar Memorias RAM y *Motherboards* en una misma línea de producción.

Según datos obtenidos por medio de la comunicación personal con el responsable del área de SMT de Grupo Núcleo es posible ensamblar 1816 unidades de Memorias RAM y 272 unidades de *Motherboard* por turno de 8 horas.

En el Anexo II, se presenta la lista estructurada de materiales del producto en la que se detalla cuáles son los componentes necesarios para el ensamble y la obtención del producto final, además de indicar cuales son fabricados por Grupo Núcleo y cuales se compran.

En cuanto a las etapas implicadas en los procesos productivos de dichos productos, las mismas han sido descriptas anteriormente en el capítulos 2 y en la sección 3.2.2 de este capítulo, al igual que la estrategia de flujo a seguir.

En la Figura 28 y Figura 29 se presenta el Cursograma Sinóptico para la memoria RAM y para el *motherboard* respectivamente en donde se describen las principales operaciones e inspecciones implicadas en el proceso productivo.

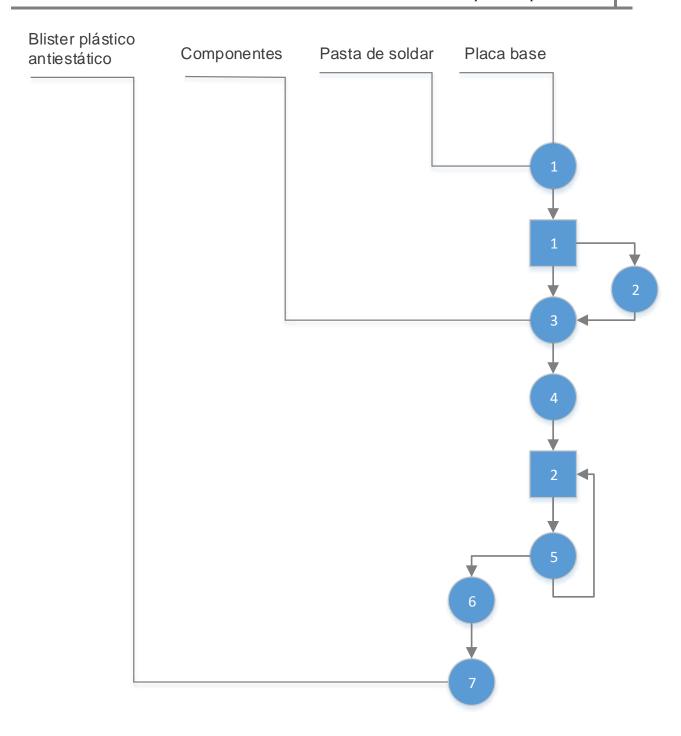


Figura 28: Cursograma Sinóptico Memoria RAM Fuente: elaboración propia en base a datos de Grupo Núcleo

Las inspecciones y operaciones enumeradas en la Figura 28 se describen a continuación:

Operación 1: Inyectar la pasta de soldar (NP5 : 3) en la placa base mediante una impresora, 0,1 minutos/u.

<u>Inspección 1</u>: Verificar que la cantidad de pasta de soldar este dentro de los límites de tolerancia, 0,2 minutos/u.

Operación 2: Realizar la limpieza manual del sobrante de pasta utilizando una pistola de aire comprimido, 3 minutos/u.

Operación 3: Ensamblar los componentes (NP: 4 al 146) mediante equipos que toman dichos componentes y los posicionan sobre la pasta de soldar, 0,22 minutos/u.

Operación 4: Cocinar las placas en el horno a una temperatura inicial de 350°C y una temperatura final de 100°c para lograr la completa adhesión de los componentes a la placa, 0,2 minutos/u.

Inspección 2: Testear las memorias para verificar su correcto funcionamiento, 0,1 minutos/u. Para ello se realizan dos tipos de test, uno de corta duración que se aplica a todas las memorias ensambladas y otro completo, de larga duración que se realiza sobre un 5% del lote total de producción. Si la inspección es exitosa, el producto pasa a la operación 6, caso contrario a la 5.

Operación 5: Reprocesar en forma manual las piezas que no hayan pasado la inspección 2, 5 minutos/u.

Operación 6: Separar las dos unidades de producto final que posee la placa en forma manual mediante la utilización de una herramienta de corte, 0,8 minutos/u.

Operación 7: Empacar las memorias de forma manual en un blíster plástico antiestático (NP: 147) cuya capacidad es de 50 memorias por blíster, 0,2 minutos/u.

⁵ NP: Número de parte.

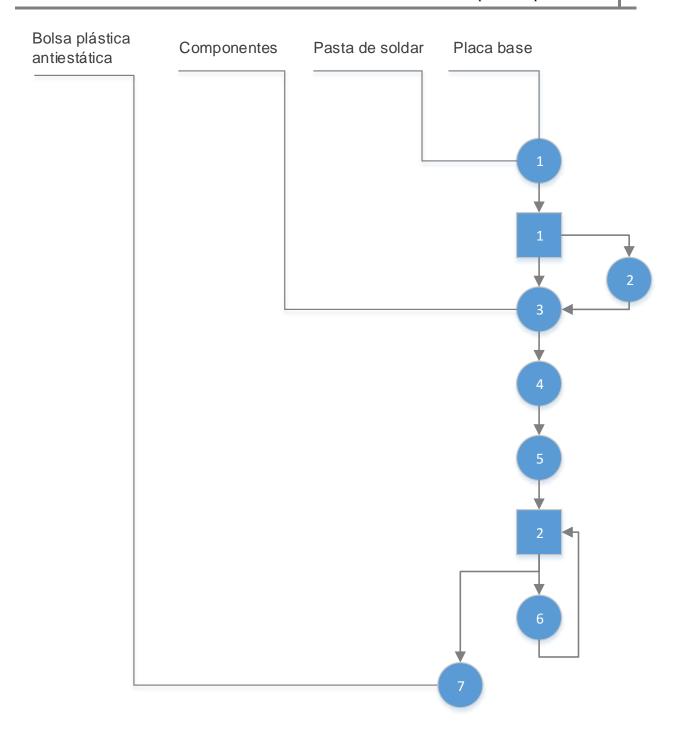


Figura 29: Cursograma Sinóptico *Motherboard*Fuente: Elaboración propia en base a datos de Grupo Núcleo

Las inspecciones y operaciones enumeradas en la Figura 29 se describen a continuación:

Operación 1: Inyectar la pasta de soldar (NP: 3) en la placa base (NP: 2) mediante una impresora, 0,3 minutos/u.

<u>Inspección 1</u>: Verificar que la cantidad de pasta de soldar este dentro de los límites de tolerancia, 0,2 minutos/u.

Operación 2: Realizar la limpieza manual del sobrante de pasta utilizando una pistola de aire comprimido, 5 minutos/u.

Operación 3: Ensamblar los componentes (NP: 4 al 242) mediante equipos que toman dichos componentes y los posicionan sobre la pasta de soldar, 0,39 minutos/u.

Operación 4: Cocinar las placas en el horno a una temperatura inicial de 350°C y una temperatura final de 100°c para lograr la completa adhesión de los componentes a la placa, 1,2 minutos/u.

Operación 5: Separar las dos unidades de producto final que posee la placa mediante una despanelizadora que posee una herramienta de corte, 0,8 minutos/u.

Inspección 2: Testear los *motherboards* para verificar su correcto funcionamiento, 0,9 minutos/u. Para ello se realizan dos tipos de test, uno de corta duración que se aplica a todas las memorias ensambladas y otro completo, de larga duración que se realiza sobre un 5% del lote total de producción. Si la inspección es exitosa, el producto pasa a la operación 7, caso contrario a la 6.

Operación 6: Reprocesar manualmente las piezas que no hayan pasado la inspección 1, 7 minutos/u.

Operación 7: Empacar el *motherboard* de forma manual en una bolsa plástica antiestática (NP: 243), 0,5 minutos/u.

En la Tabla 25 y Tabla 26 se enumeran las operaciones descriptas en los Cursogramas Sinópticos (Figura 28 y Figura 29), los equipos en las que se llevan a cabo y el tiempo estándar de cada una de ellas.

Memoria RAM						
Operación	Equipo	Tiempo estándar [minutos/u]				
Inyectar pasta de soldar en la placa base	Printer Momentum MPM	0,1				
Verificar la cantidad de pasta de soldar	SPI KY8030	0,2				
Limpieza manual de las placas	Operario	3				
Ensamblar los componentes	FX3 Chip Shooter, KE 2080, MTS	0,22				
Cocinar las placas	Horno Reflow	0,2				
Separar las dos unidades de producto final	Operario	0,5				
Testear las memorias	SP 3000	0,1				
Reprocesar las piezas	Operario	5				
Empacar las memorias	Operario	0,2				

Tabla 25: Tiempo estándar de las operaciones de la Memoria RAM Fuente: Elaboración propia en base a datos de Grupo Núcleo

Motherboard						
Operación	Equipo	Tiempo estándar [minutos/u]				
Inyectar pasta de soldar en la placa base	Printer Momentum MPM	0,3				
Verificar la cantidad de pasta de soldar	SPI KY8030	0,2				
Limpieza manual de las placas	Operario	5				
Ensamblar los componentes	FX3 Chip Shooter, KE 2080, MTS	0,39				
Cocinar las placas	Horno Reflow	1,2				
Separar las dos unidades de producto final	Router	0,8				
Testear los motherboards	SP 3000	0,9				
Reprocesar las piezas	Operario	7				
Empacar los motherboards	Operario	0,5				

Tabla 26: Tiempo estándar de las operaciones del *Motherboard* Fuente: Elaboración propia en base a datos de Grupo Núcleo

Los datos de los tiempos estándares de cada operación fueron obtenidos a través de estudios realizados por la empresa Grupo Núcleo. En la Tabla 27 se detalla la cantidad de chip que ensambla cada equipo para cada producto.

	Cantidad de Chips				
	Memoria RAM	Motherboard			
FX3 Chip Shooter	83	139			
KE 2080	30	50			
MTS	30	50			

Tabla 27: Cantidad de Chips ensamblados por equipo Fuente: Elaboración propia en base a datos de Grupo Núcleo

Con el fin de poder determinar la cantidad de equipos necesarios, en primer lugar se debe calcular el tiempo de procesamiento o tasa de planta, que resulta de dividir el tiempo efectivo de producción por las unidades requeridas.

En el caso de las memorias RAM es posible ensamblar 1816 unidades en un turno de 8 horas, es decir durante 480 minutos. El tiempo improductivo por día es de 48 minutos, ya que se destinan 30 minutos diarios para almorzar, 10 minutos para cualquier necesidad fisiológica y para descanso en el que el operario puede salir de la planta y 8 minutos para contingencias o reuniones para exponer los resultados de cada día. La productividad de la planta es un dato brindado por la empresa y resulta del 90%. A partir de los datos descriptos se obtiene que el tiempo de procesamiento para la memoria RAM es de 0,214 minutos/u.

En el caso de los *motherboards* es posible ensamblar 1816 unidades en un turno de 8 horas, es decir durante 480 minutos. El tiempo improductivo, al igual que para las memorias RAM es de 48 minutos y la productividad es del 90%. A partir de los datos descriptos se obtiene que el tiempo de procesamiento para el *motherboard* RAM es de 1,43 minutos/u.

Teniendo en cuenta los tiempos estándares de cada operación y el tiempo de procesamiento, la cantidad de equipos necesarios se presenta en la Tabla 28.

	Memoria I	RAM	Motherboard				
Equipo	Tiempo estándar Número de Ti [mín/u] equipos		Tiempo estándar [mín/u]	Número de equipos			
Printer Momentum MPM	0,1	0,47	0,3	0,21			
SPI KY8030	0,07	0,33	0,2	0,14			
FX3 Chip Shooter	0,06	0,28	0,09	0,06			
KE 2080	0,09	0,42	0,15	0,10			
MTS	0,09	0,42	0,15	0,10			
Horno	0,2	0,93	1,2	0,84			
Router	-	-	0,8	0,56			
SP 3000	0,1	0,47	0,9	0,63			

Tabla 28: Cantidad de equipos necesarios para la producción Fuente. Elaboración propia en base a datos de Grupo Núcleo

Redondeando al entero más próximo se obtiene que es necesario una unidad de cada equipo para alcanzar la producción deseada.

3.3.2.4.1. Análisis de Flujo

Con el fin de minimizar el tráfico cruzado y las distancias que viajan los materiales y los operarios, se lleva a cabo el análisis de flujo. Para ello se plantean los diagramas de recorridos de dos alternativas distintas de distribución en planta para cada uno de los productos (memoria RAM y *motherboard*).

Alternativa 1: A partir de la distribución en planta actual (Figura 19) se plantea la incorporación a la línea de producción de los equipos necesarios para llevar a cabo la ampliación de la planta. Estos son los equipos SPI KY 8030 y FX3, los cuales son necesarios para llevar a cabo el ensamble de *motherboards* y para aumentar la capacidad de producción de memorias RAM. Con dicha incorporación la línea se extiende 3,9 metros.

Alternativa 2: A partir de la distribución en planta actual (Figura 19) se plantea la incorporación a la línea de producción de los equipos necesarios para llevar a cabo la ampliación de la planta y además se reubican algunos materiales y equipos con el fin de optimizar las distancias recorridas y flujos cruzados. Para ello se realizan los siguientes cambios:

- Las estructuras metálicas porta placas, señalizadas con la letra "D" en la Figura 30 han sido reubicadas tal como se indica en la Figura 31. Esta modificación se debe a que al incorporar los nuevos equipos a la línea y por consiguiente al aumentar el largo de la misma, se cree necesario trasladar los porta placas para favorecer la circulación de los empleados.
- El gabinete de baja humedad, indicado con la letra "C" y la heladera indicada con la letra "E" (Figura 30) se trasladan de pared quedando próximos a las varas metálicas (Figura 31).
- El Router, señalizado con la letra "L" en la Figura 30, es uno de los equipos incorporados con la modificación de la planta que se lo reubica de posición debido a su cercanía a la finalización de la línea productiva, tal como se muestra en la Figura 31.
- La estantería de producto terminado, indicada con la letra "G" en la Figura 30, se reubica para evitar que los operarios tengan que trasladarse grandes distancias para depositar los productos en dicha estantería.
- Se divide la mesa de trabajo rework y se traslada de lugar, quedando una mesa específicamente para rework indicada con la letra "I" y otra para envase indicada con la letra "M" tal como se muestra en la Figura 31, próximas a la estantería de producto terminado.
- Se desplaza la línea de ensamble 60cm hacia la derecha, debido a la modificación del gabinete de baja humedad y la heladera.

En la Figura 30 se presenta el diagrama de recorrido de la memoria RAM para la alternativa 1 y en la Figura 31 para la alternativa 2. En los mismos se utilizan colores diferentes que hacen referencia a los cursogramas analíticos descriptos posteriormente en las Tabla 33, Tabla 34, Tabla 35, Tabla 36 y Tabla 37. Las operaciones, inspecciones, transportes, espera y almacenamiento enumerados en los diagramas de recorridos son las que se desarrollan en los cursogramas analíticos de los materiales.

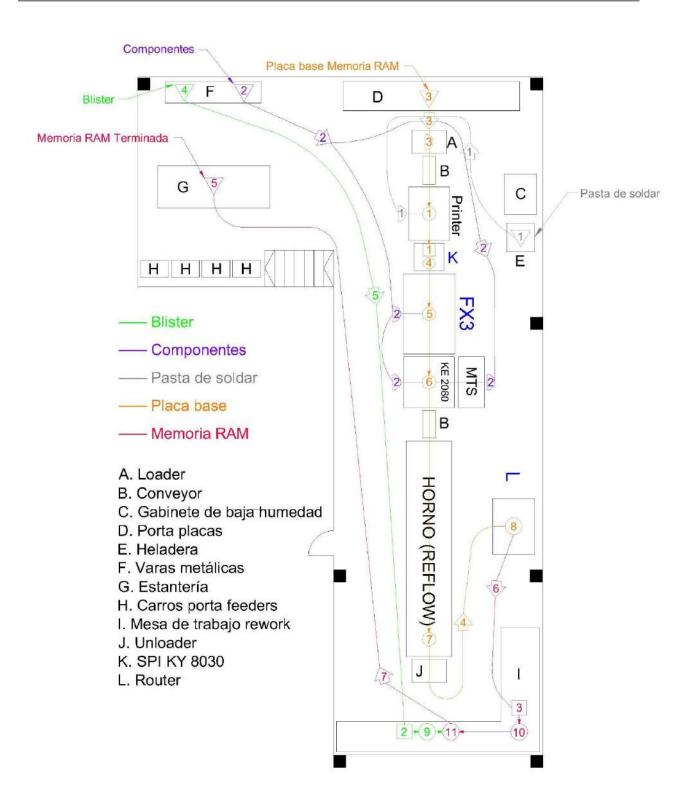


Figura 30: Diagrama de recorrido Memoria RAM - Alternativa 1 Fuente: Elaboración propia en base a datos de Grupo Núcleo

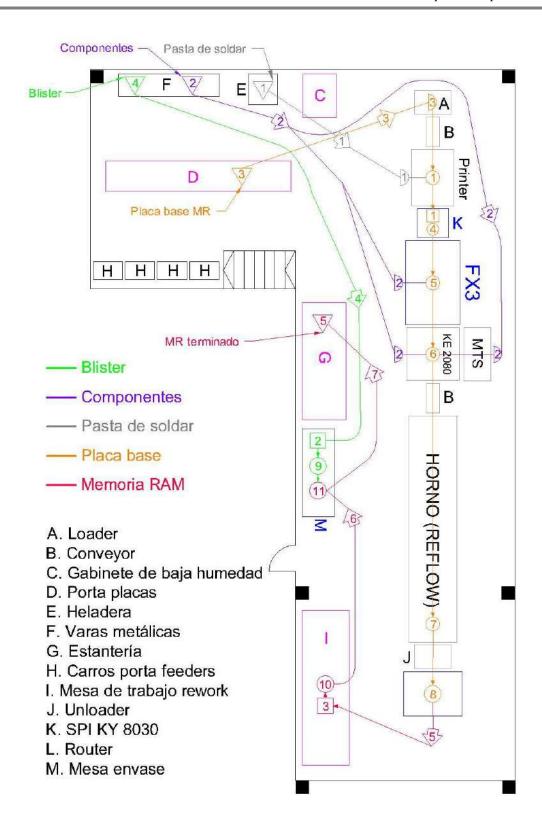


Figura 31: Diagrama de recorrido Memoria RAM - Alternativa 2 Fuente: Elaboración propia en base a datos de Grupo Núcleo

En la Tabla 29 se presenta la cantidad de metros recorridos por los materiales en las dos posibles alternativas. Con la alternativa 1, se recorren 108,09m, mientras que con la alternativa 2 se recorren 77,55m. Es decir que desde el punto de vista de la distancia recorrida es conveniente la alternativa 2 ya que se recorren 30,54m menos.

A su vez, tal como se indica en la Tabla 30, en la alternativa 2 hay menor cantidad de líneas de flujo cruzado. A pesar de que esta cantidad no disminuye notablemente entre ambas alternativas, cabe destacar que de las 6 líneas de tráfico cruzado de la Alternativa 2, 4 de ellas suceden en una zona crítica, dado que ocurren prácticamente en el mismo punto, en un pasillo de 70 cm.

En consecuencia es más conveniente la alternativa 2 para la producción de memorias RAM.

	Memoria RAM	
Material	Cantidad de m recorridos en Alternativa 1	Cantidad de m recorridos en Alternativa 2
Blister plástico	26,25	17,00
Componentes	15,00	15,00
Pasta de Soldar	10,97	4,55
Placa base	22,00	27,00
Memoria RAM	33,87	14,00
Total recorrido	108,09	77,55

Tabla 29: Memoria RAM - Distancia recorrida por los materiales Fuente: Elaboración propia en base a datos de Grupo Núcleo

Tráfico cruzado						
Producto Alternativa 1 Alternativa 2						
Memoria RAM		6	5			

Tabla 30: Memoria RAM - Tráfico cruzado

Fuente: Elaboración propia en base a datos de Grupo Núcleo

El mismo análisis se lleva a cabo para el *Motherboard*. En la Figura 32 se presenta el diagrama de recorrido del *Motherboard* para la alternativa 1 y en la Figura 33 para la alternativa 2.

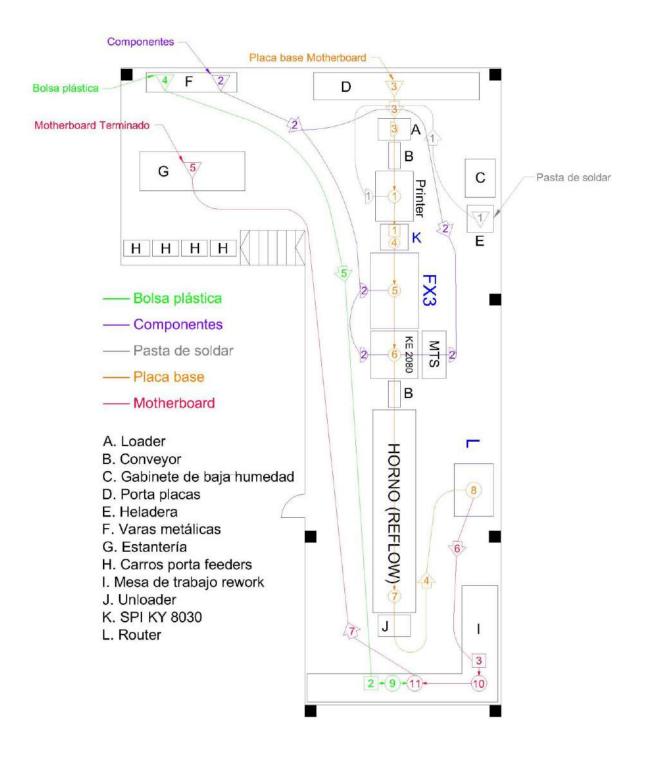


Figura 32: Diagrama de recorrido *Motherboard*- Alternativa 1 Fuente: Elaboración propia en base a datos de Grupo Núcleo

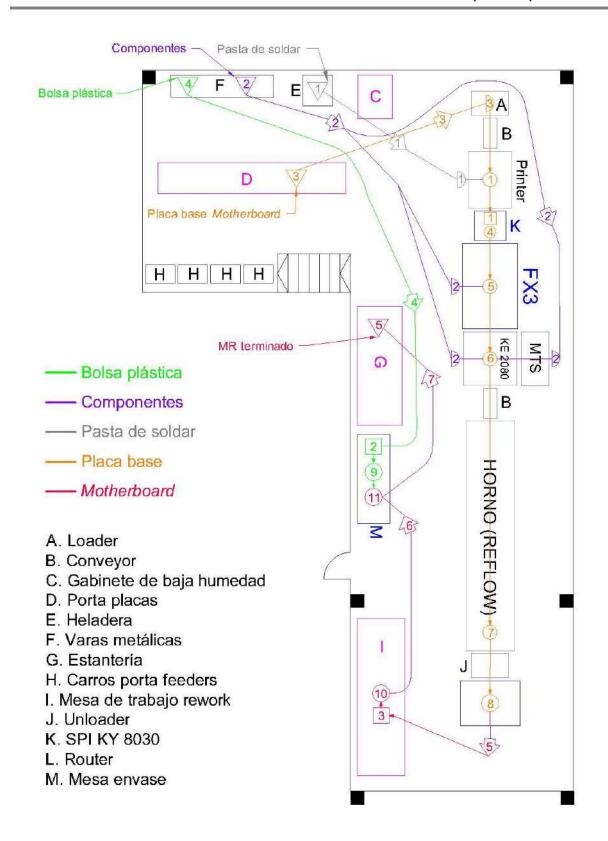


Figura 33: Diagrama de recorrido *Motherboard* - Alternativa 2 Fuente: Elaboración propia en base a datos de Grupo Núcleo

En la Tabla 31 se presenta la cantidad de metros recorridos por los materiales del *motherboard* en las dos posibles alternativas. Con la alternativa 1, se recorren 105,84m, mientras que con la alternativa 2 se recorren 75,30m. Al igual que para el caso de las memorias RAM, desde el punto de vista de la distancia recorrida es conveniente la alternativa 2 ya que se recorren menos cantidad de metros.

En cuanto al tráfico cruzado, tal como se indica en la Tabla 32, en la alternativa 2 hay menor cantidad de líneas de flujo cruzado. Por ambas razones, es más conveniente la alternativa 2 para la producción de *motherboards*.

Motherboard							
Material	Cantidad de m recorridos en Alternativa 1	Cantidad de m recorridos en Alternativa 2					
Bolsa plástica	26,25	17,00					
Componentes	15,00	15,00					
Pasta de Soldar	10,97	4,55					
Placa base	19,75	24,75					
Memoria RAM	33,87	14,00					
Total recorrido	105,84	75,30					

Tabla 31: *Motherboard* - Distancia recorrida por los materiales Fuente: Elaboración propia en base a datos de Grupo Núcleo

Tráfico cruzado					
Producto Alternativa 1 Alternativa 2					
Motherboard		6	5		

Tabla 32: *Motherboard* - Tráfico cruzado

Fuente: Elaboración propia en base a datos de Grupo Núcleo

Tanto para la producción de memorias RAM como para la de *motherboards*, es conveniente la distribución que se propone en la alternativa 2, por lo que resulta necesario realizar dichas modificaciones en la planta para realizar el ensamble de ambos productos.

3.3.2.4.1. Cursogramas Analíticos

En las Tabla 33, Tabla 34, Tabla 35, Tabla 36 y Tabla 37 se observan los cursogramas analíticos de los materiales asociados a la producción de las memorias RAM. Ellos son: blíster plástico antiestático, componentes, pasta de soldar, placa base y memoria RAM. En dichos cursogramas se registra la propuesta de operaciones, transportes, esperas, inspecciones y almacenamientos asociados a la manipulación de los materiales. En el caso de la Memoria RAM, el estado actual de cada actividad fue obtenido por personal idóneo de Grupo Núcleo y analizado in situ, mientras que en el *Motherboard*, al ser un producto incorporado en el presente trabajo no posee estado actual de las actividades.

Cursograma analítico Operario / Material /- Equipo										
Diagrama núm. 1 Hoja núm. 1 de 1					Resumen					
Objeto:	Actividad			Actual				Propuesta	Economía	
Blíster plástico antiestático	Operación		•			•	1		1	0
	Transporte		→			3	3		3	0
Actividad:	Espera		D			()		0	0
Ensamblar Memorias RAM	Inspección	ı				•	1		1	0
	Almacena	miento	lacktriangle			•	1		1	0
Método: Actual / Propuesto	Distancia ((m)				27	',3		26,25	1,05
Lugar: Planta SMT	Tiempo (m	inutos - hor	mbre)		-				-	-
Operarios: Ficha núm. 12	Costo				-					
571	Mano de	obra			-					
Compuesto: Fecha:	Material				-					
Aprobado por: Fecha:	Total				-				-	-
Descripcion de las operaciones	Cantidad	Distancia	Tiempo		Símbolos			Observaciones		
Descripcion de las operaciones	(u)	(m)	(minutos)	•	\Rightarrow	D		▼		
Almacenamiento en estantería de materia prima								•	En cajas de 100u	
Recogido de los blísteres	4				•				En forma manual	· · · · · · · · · · · · · · · · · · ·
Transportado hasta la mesa de trabajo		26,25			•				En forma manual por el operari	
Descargado sobre mesa de trabajo					•				En forma manual	<u> </u>
Inspeccionado visual							٠		Estado físico del	blíster
Apertura del blíster				•					En forma manual	por el operario
Total		26,25		1	3	0	1	1		

Tabla 33: Cursograma Analítico Memoria RAM: Blíster plástico antiestático Fuente: Elaboración propia en base a datos de Grupo Núcleo

Cursograma analítico				Ор	era	rio / Material /- Equipo						
Diagrama núm. 2 Hoja núm.	1 de 1					ı	Resi	ume	n			
Objeto:			Activida	ad			Ac	tual		Propuesta	Economía	
Componentes (del 4 al 146)		Operació	n	•			(0		0	0	
		Transpor	Transporte				;	3		3	0	
Actividad:		Espera	Espera					1		1	0	
Ensamblar Memorias RAM		Inspecció	Inspección				(0		0	0	
		Almacen	Almacenamiento					1		1	0	
Método: Actual / Propuesto		Distancia	a (m)				27	,48		15	12,48	
Lugar: Planta SMT		Tiempo (minutos - h	ombre)		-				-	-	
Operarios:	Ficha núm	. 1Costo				-						
	5	71 Man	o de obra			-						
Compuesto:	Fecha:	Mate	erial			-						
Aprobado por:	Fecha:	Total						-		-	-	
Descripcion de I	an anarasianas	Cantidad	Distancia	Tiempo		Sír	nbo	los		Ohaa	rvaciones	
Descripcion de i	as operaciones	(u)	(m)	(minutos)	•	\Rightarrow			▼	Obse	ivaciones	
Almacenamiento en varas metá	licas								•	En rollos de 500	00u.	
Recogido de los rollos de comp	onentes	5	5			•				En forma manu	al por el operario	
Transportados hasta los equipos	s de la línea de ensamble	5	5 15			•				En forma manu	al por el operario	
Colocados en los equipos		5				•				En forma manu	al por el operario	
Espera hasta que el equipo con						٠				•		
	Tot	al	15		0	3	1	0	1			

Tabla 34: Cursograma Analítico Memoria RAM: Componentes Fuente: Elaboración propia en base a datos de Grupo Núcleo

Cursograma analítico				e	per	aric) / N	late	rial	/-Equipo	
Diagrama núm. 3 Hoja núm. 1	de 1						Re	sum	en		
Objeto:			Activida	d			Act	tual		Propuesta	Economía
Pasta de soldar (500g)		Operación		•				1		1	0
		Transporte		⇒			;	3		3	0
Actividad:		Espera		Ď				1		1	0
Ensamblar Memorias RAM		Inspección			0				0	0	
		Almacenamiento						1		1	0
Método: Actual / Propuesto		Distancia (m)				11	,41		4,55	6,86
Lugar: Planta SMT		Tiempo (minutos - hombre)						-		-	-
Operarios:	Ficha núm. 12	Costo						-			
•	571	Mano d	de obra					-			
Compuesto:	Fecha:	Materia	al					-			
Aprobado por:	Fecha:	Total						-		-	-
		Cantidad	Distancia	Tiempo		Sír	nbo	los		0.	
Descripcion de las ope	eraciones	(g)	(m)	(minutos)	•	>	D		▼	Observa	aciones
Almacenamiento en heladera									•		
Recogido del recipiente con pasta	a de soldar	500				•				En forma manual poi	el operario
Transportada hasta la línea de en	samble	500	4,55			•				En forma manual poi	el operario
Colocado de la pasta de soldar er	n el equipo	500				•				En forma manual poi	el operario
Espera hasta que el equipo comic	ence a funcionar.						•				
Inyectado en la placa base		1			•					De forma automática	
·	Total		4,55		1	3	1	0	1		

Tabla 35: Cursograma Analítico Memoria RAM: Pasta de soldar Fuente: Elaboración propia en base a datos de Grupo Núcleo

Cursograma analítico						Оре	rari	Θ/	Material /-Equipo		
Diagrama núm. 4 Hoja núm. 1 de 1								R	esumen		
Objeto:		Activid	ad			Ac	tual		Propuesta	Economía	
Placa base	Operación	า	•				5		5	0	
	Transport	е	→			1	0		10	0	
Actividad:	Espera		Ď		1				1 0		
Ensamblar Memorias RAM	Inspecció	n					1		1	0	
	Almacena	amiento	▼				1		1	0	
Método: Actual / Propuesto	Distancia	(m)				27	,32		29,95	-2,63	
Lugar: Planta SMT	Tiempo (r	ninutos - h	ombre)				-		-	-	
Operarios: Ficha núi	m. 12 Costo						-				
•	571 Mano	de obra					-				
Compuesto: Fecha:	Mate	rial					-				
Aprobado por: Fecha:	Total						-		-	-	
Described de les escribes	04:-11	Distancia	Tiempo		Síı	mbo	los		Ohaaa		
Descripcion de las operaciones	Cantidad	(m)	(minutos)	•	\Rightarrow	D		▼	Obser	vaciones	
Almacenamiento en porta placas	50	, ,	,					•			
Recogido de las placas	6				•				En forma manual por el ope	erario	
Transportadas hasta la línea de ensamble	6	5,75			•				En forma manual por el ope	erario	
Descargadas sobre el Loader	6				•				En forma manual por el ope	erario	
Espera hasta que el equipo utilice la placa	1					•					
Transportado por la línea de ensamble	1	2,5			•				Mediante conveyor		
Inyectado de la pasta de soldar	1g			•					Por medio del equipo (Print	er)	
Transportado por la línea de ensamble	1	1			•				Mediante el conveyor		
Inspeccionado de la cantidad de pasta	1						•		Por medio del equipo (SPI	KY 8030)	
Limpiado del excedente de pasta	1			•					Mediante una pistola de air	e comprimido	
Transportado por la línea de ensamble	1	1			•				Mediante el conveyor		
Ensamblado con los componentes	1			•					Por medio de los equipos (FX3 y KE 2080)	
Transportado por la línea de ensamble	1	13			•				Mediante el conveyor		
Cocinado	1			•					En el homo		
Transportado por la línea de ensamble	1	1			•				Mediante el conveyor		
Recogido de las placas	1				•				En forma manual por el operario mediante unloader		
Transportadas hasta el router	1	5,7			•				En forma manual por el operario		
Despanelizado de la placa	1			•					En forma automática por el equipo (Router)		
•	Total	29,95		5	10	1	1	1			

Tabla 36: Cursograma Analítico Memoria RAM: Placa Base Fuente: Elaboración propia en base a datos de Grupo Núcleo

Cursograma analítico				0	pera	ario	/ M	ater	ial /- Equipo			
Diagrama núm. 5 Hoja núm. 1 de 1					Resumen							
Objeto:		Activid	ad			Ac	tual		Propuesta	Economía		
Memoria RAM	Operació	Operación			3				3	0		
	Transport	е	→			;	3		3	0		
Actividad:	Espera		Ď			(0		0	0		
Ensamblar Memorias RAM	Inspecció	n					1		1	0		
	Almacena	amiento	▼				1		1	0		
Método: Actual / Propuesto	Distancia	(m)				33	,88		11,69	22,19		
Lugar: Planta SMT	Tiempo (r	ninutos - h	nombre)				-		-	-		
Operarios: Ficha núm.	12 Costo						-					
57	1 Mano	de obra					-					
Compuesto: Fecha:	Mate	rial					-					
Aprobado por: Fecha:	Total						-		-	-		
Descripcion de los energeiones	Cantidad	Distancia	Tiempo		Sír	mbo	los		Observ	noionno		
Descripcion de las operaciones	Carilluau	(m)	(minutos)	•		D		▼	Observ	aciones		
Transportadas hacia la mesa de trabajo	2	6,83			•				En forma manual por e	l operario		
Testeado del funcionamiento	2						•					
Reprocesado de la placa	2			٠								
Llenado del blíster con memorias RAM	50			•					En forma manual por e	el operario		
Cerrado del blíster				•					En forma manual por e	l operario		
Transportado hasta estantería de producto terminado		4,86			•				En forma manual por e	l operario		
Depositados en estantería					•							
Almacenamiento								•				
Tota	al	11,69		3	3	0	1	1				

Tabla 37: Cursograma Analítico Memoria RAM Fuente: Elaboración propia en base a datos de Grupo Núcleo

En las Tabla 38, Tabla 39, Tabla 40, Tabla 41, Tabla 42 se observa los cursogramas analíticos de los materiales asociados a la producción de *motherboard*. Ellos son: bolsa plástica antiestática, componentes, pasta de soldar, placa base y *motherboard*.

Cursograma analítico	sograma analítico							perario / Material / Equipo							
Diagrama núm. 6 Hoja n	úm. 1 de 1						Re	esun	nen						
Objeto:			Actividad	d			Act	ual		Propuesta	Economía				
Bolsa plástica antiestática		Operación		•						1					
		Transporte	9	→						3					
Actividad:		Espera								0					
Ensamblar Motherboard		Inspección								1					
		Almacenamiento								1					
Método: Actual / Propuest	to	Distancia (m)								26,25					
Lugar: Planta SMT		Tiempo (minutos - hombre)						-		-	-				
Operarios:	Ficha núm. 1234	Costo				-									
	571	Mano d	le obra					-							
Compuesto:	Fecha:	Materia	ıl					-							
Aprobado por:	Fecha:	Total						-		-	-				
Descrincion de	las operaciones	Cantidad	Distancia	Tiempo			nbo	los		Observaciones					
	<u> </u>	Caritidaa	(m)	(min)	•		D		▼	Oboorn	30101100				
Almacenamiento en estante	ería de materia prima								•						
Recogido de las bolsas		50				•				En forma manual po	or el operario				
Transportado hasta la mesa	a de trabajo	26,25			•				En forma manual po	or el operario					
Descargado sobre mesa de	e trabajo				•				En forma manual po	or el operario					
Inspeccionado visual							•		Estado físico de la b	olsa					
Apertura de la bolsa				•					En forma manual po	or el operario					
	Total		26,25		1	3	0	1	1						

Tabla 38: Cursograma Analítico *Motherboard*: Bolsa plástica antiestática Fuente: Elaboración propia en base a datos de Grupo Núcleo

Cursograma analítico				9	oera	rio/	Mat	eria	I/Ec	juipo					
Diagrama núm. 7 Hoja	núm. 1 de 1					Resumen									
Objeto:			Activida	ıd			Act	tual		Propuesta	Economía				
Componentes (4 al 242)		Operación	1	•						0					
		Transport	e	=						3					
Actividad:		Espera	•							1					
Ensamblar Motherboard		Inspección								0					
		Almacenamiento								1					
Método: Actual / Propue	sto	Distancia (m)								15					
Lugar: Planta SMT		Tiempo (minutos - hombre)						-		-	-				
Operarios:	Ficha núm. 1234	Costo						-							
	571	Mano	de obra					-							
Compuesto:	Fecha:	Materia	al					-							
Aprobado por:	Fecha:	Total						-		-	-				
Descripcion	de las operaciones	Cantidad	Distancia	Tiempo		Sír	mbo	los		Observ	ncionos				
Descripcion	de las operaciones	Carilluau	(m)	(minutos)	•	1			▼	Observe	aciones				
Almacenamiento en varas	metálicas								•						
Recogido de los rollos de	componentes	5				•				En forma manua	Il por el operario				
Transportados hasta los e	equipos de la línea de ensamble	15			•				En forma manua	Il por el operario					
Colocados en los equipos	8					•				En forma manua	l por el operario				
Espera hasta que el equip	oo comience a funcionar						•				•				
	Total		15		0	3	1	0	1						

Tabla 39: Cursograma Analítico *Motherboard*: Componentes Fuente: Elaboración propia en base a datos de Grupo Núcleo

Cursograma analítico				e	Operario / Material / Equipo							
Diagrama núm. 8 Hoja núm. 1 de 1						F	Resu	mei	1			
Objeto:		Activida	ıd			Act	tual		Propuesta	Economía		
Pasta de soldar (500g)	Operación	n	•						1			
	Transport	te	→						3			
Actividad:	Espera		Ď						1			
Ensamblar Motherboard	Inspecció	n							0			
	Almacena	amiento	_						1			
Método: Actual / Propuesto	Distancia	(m)							4,55			
Lugar: Planta SMT	Tiempo (r	minutos - h	ombre)				-		-	-		
Operarios: Ficha núm. 123	4 Costo						-					
57	1 Mano	de obra					-					
Compuesto: Fecha:	Materi	al					-					
Aprobado por: Fecha:	Total						-		-	-		
Descripcion de las operaciones	Cantidad	Distancia	Tiempo		Síı	mbo	los		Ohserv	aciones		
Bosonpoion de las operaciones	(g)	(m)	(minutos)	•	\Rightarrow			▼	Obdelv	40101100		
Almacenamiento en heladera								•				
Recogido del recipiente con pasta de soldar	500				•				En forma manual por	el operario		
Trasportado hasta la línea de ensamble	500	4,55			•				En forma manual por	el operario		
Colocado de la pasta de soldar en el equipo	500				•				En forma manual por	el operario		
Espera hasta que el equipo comience a funcionar.						•						
Inyectado en la placa base	1			•					De forma automática			
Tot	al	4,55		1	3	1	0	1				

Tabla 40: Cursograma Analítico *Motherboard*: Pasta de soldar Fuente: Elaboración propia en base a datos de Grupo Núcleo

Cursograma analítico					θ	pera	rio	/ Ma	ater	ial /- Equipo	
Diagrama núm. 9 Hoja núm. 1 de 1								Res	um	en	
Objeto:			Activida	ad			Ac	tual		Propuesta	Economía
Placa base		Operación)	•						5	
		Transport	е	→						8	
Actividad:		Espera		Ď						1	
Ensamblar Motherboard		Inspecció	n							1	
		Almacenamiento								1	
Método: Actual / Propuesto		Distancia (m)								24,75	
Lugar: Planta SMT		Tiempo (minutos - hombre)						-		-	•
Operarios:	Ficha núm. 12							-			
	571	Mano	de obra					-			
Compuesto: Fecha:		Mate	ial					-			
Aprobado por: Fecha:		Total						-		-	•
Descripcion de las operacion	200	Cantidad	Distancia	Tiempo			mbo			Obser	vaciones
Descripcion de las operación	103	Caritidad	(m)	(minutos)		\Rightarrow			lacksquare	Obser	vaciones
Almacenamiento en porta placas									•		
Recogido de las placas						•				En forma manual por	el operario
Trasportado hasta la línea de ensamble	•		5,75			•				En forma manual por	el operario
Descargado sobre el Loader						•				En forma manual por	el operario
Espera hasta que el equipo utilice la pl	aca	1					•				
Transportado por la línea de ensamble		1	2,5			•				Mediante conveyor	
Ensamblado con la pasta de soldar		2g			•					Por medio del equipo	(Printer)
Inspeccionado de la cantidad de pasta		1						•		Por medio del equipo	(SPI KY 8030)
Limpiado del excedente de pasta		1			•					Mediante una pistola	de aire comprimido
Transportado por la línea de ensamble			1			•				Mediante el conveyor	
Ensamblado con los componentes					•					Por medio de los equi	pos (FX3 y KE 2080)
Transportado por la línea de ensamble			13			•				Mediante el conveyor	
Cocinado					•					En el horno	
Recogido de las placas						•				En forma manual por	
Transportado hasta el router			2,5			•				En forma manual por	
Despanelizado de la placa					•					En forma automática	oor el equipo (Router)
	Total		24,75		5	8	1	1	1		

Tabla 41: Cursograma Analítico *Motherboard*: Placa Base Fuente: Elaboración propia en base a datos de Grupo Núcleo

Cursograma analítico					θ	pera	ario	/ M	ater	ial /-Equipo			
Diagrama núm. 10 Hoja núm. 1 de	1						Resumen						
Objeto:			Activida	ad			Ac	tual		Propuesta	Economía		
Motherboard		Operación	า	•						3			
		Transport	е	→						3			
Actividad:		Espera		Ď						0			
Ensamblar Motherboard		Inspecció	n							1			
		Almacena	amiento	lacktriangle						1			
Método: Actual / Propuesto		Distancia	(m)							19,86			
Lugar: Planta SMT		Tiempo (r	ninutos - h	ombre)				-		•	-		
Operarios:	Ficha núm. 12	Costo						-					
	571	Mano	de obra					-					
Compuesto:	Fecha:	Mate	rial					-					
Aprobado por:	Fecha:	Total						-		-	-		
Descripcion de las opera	aciones	Cantidad	Distancia	Tiempo			mbo			Observa	aciones		
Descripcion de las opera	40101103	Odritidad	(m)	(minutos)	•	→	D		▼				
Transportadas hacia la mesa de traba	ajo		1,5			•				En forma manual por e	l operario		
Testeado del funcionamiento								•					
Reprocesado de la placa					•								
Llenado de la bolsa con motherboard		50			•					En forma manual por e	l operario		
Cerrado del blíster					•					En forma manual por e	l operario		
Transportado hasta estantería de pro-	ducto terminado		18,36			•				En forma manual por e	l operario		
Depositados en estantería						•							
Almacenamiento									•				
	Total		19,86		3	3	0	1	1				

Tabla 42: Cursograma Analítico *Motherboard*Fuente: Elaboración propia en base a datos de Grupo Núcleo

3.3.2.4.2. Requerimientos de superficie

Una vez determinada la alternativa seleccionada se propone calcular los requerimientos de superficie para la producción de Memorias RAM y de *Motherboards*, los cuales se detallan en la Tabla 43 y Tabla 44, respectivamente. Cabe destacar que nunca estarán en producción simultánea ambos productos, por lo que se considera como espacio requerido el mayor. A su vez, se consideró un 200% de espacio adicional requerido para pasillos, el trabajo en proceso y el movimiento adecuado del personal alrededor de la línea de producción y dentro del área de almacenamiento, dado que se busca una distribución espaciosa y una mayor tolerancia para contingencias. (Stephens, M., & Meyers, F. E., 2006)

No se considera en el análisis espacio para oficinas, mantenimiento, baños y comedor ya que estos están ubicados en otro sector de la planta y no están dentro del alcance del presente trabajo.

Producto: Memoria RAM					
	Cant. Estaciones	Ancho [mm]	Largo [mm]	Superficie [mm²]	Superficie [m²]
Equipos					
Printer Momentum	1	1.203	1.593	1.916.021	1,92
KE 2080	1	1.500	1.500	2.250.000	2,25
MTS	1	1.000	1.550	1.550.000	1,55
Horno Reflow	1	1.367	6.439	8.802.113	8,80
SP 3000	1	1.000	500	500.000	0,50
Loader	1	1.000	1.000	1.000.000	1,00
Conveyor	2	1.000	1.000	2.000.000	2,00
SPI KY 8030	1	1.000	1.604	1.604.000	1,60
FX3 Chip Shooter	1	2.880	1.850	5.328.000	5,33
Unloader	1	1.000	1.000	1.000.000	1,00
Almacenamiento					
Varas Metálicas	1	4.000	1.000	4.000.000	4,00
Estantería	1	1.500	4.000	6.000.000	6,00
Carros Área Variable	2	500	1.000	1.000.000	1,00
Heladera	1	1.000	1.000	1.000.000	1,00
Porta Placas	1	6.315	1.035	6.536.025	6,54
Carros Porta Feeders	4	600	1.000	2.400.000	2,40
Gabinete baja humedad	1	1.158	1.467	1.698.786	1,70
Retrabajo					
Mesa de trabajo rework	1	1.370	4.440	6.082.800	6,08
Mesa de trabajo rework	1	5.891	1.370	8.070.670	8,07
	_	35.284	34.348	62.738.415	62,74
Adicionales [%]	100%	35.284	34.348	62.738.415	62,74
Total Requerido [m²]					125,48
Total disponible [m²]					234,76

Tabla 43: Requerimiento de superficie Memoria RAM Fuente: Elaboración propia en base a datos de Grupo Núcleo

	Cant. Estaciones	Ancho [mm]	Largo [mm]	Superficie [mm²]	Superficie [m²]
Equipos					
Printer Momentum	1	1.203	1.593	1.916.021	1,92
KE 2080	1	1.500	1.500	2.250.000	2,25
MTS	1	1.000	1.550	1.550.000	1,55
Horno Reflow	1	1.367	6.439	8.802.113	8,80
SP 3000	1	1.000	500	500.000	0,50
Loader	1	1.000	1.000	1.000.000	1,00
Conveyor	2	1.000	1.000	2.000.000	2,00
SPI KY 8030	1	1.000	1.604	1.604.000	1,60
FX3 Chip Shooter	1	2.880	1.850	5.328.000	5,33
Router	1	1.500	2.000	3.000.000	3,00
Unloader	1	1.000	1.000	1.000.000	1,00
Almacenamiento					
Varas Metálicas	1	4.000	1.000	4.000.000	4,00
Estantería	1	1.500	4.000	6.000.000	6,00
Heladera	1	1.000	1.000	1.000.000	1,00
Porta Placas	1	6.315	1.035	6.536.025	6,54
Carros Area Variable	2	500	1.000	1.000.000	1,00
Carros Porta Feeders	4	600	1.000	2.400.000	2,40
Gabinete baja humedad	1	1.158	1.467	1.698.786	1,70
Retrabajo					
Mesa de trabajo rework	1	1.370	4.440	6.082.800	6,08
Mesa de trabajo rework	1	5.891	1.370	8.070.670	8,07
		36.784	36.348	65.738.415	65,74
Adicionales [%]	200%	73.567	72.696		131,48
Total Requerido [m ²]					197,22
Total disponible [m²]					234,76

Tabla 44: Requerimiento de superficie *Motherboard*Fuente: Elaboración propia en base a datos de Grupo Núcleo

En la Tabla 43 y Tabla 44 se puede observar que se han incluido "Adicionales". Estos agrupan el espacio extra requerido para pasillos, movimiento de personal y materiales. Se consideró como adicional el doble del espacio físico requerido para el equipo y almacenamiento, resultando este de 131,97 m². Este valor permite tener amplios pasillos de 2 m de ancho alrededor de la línea, lo cual

permitirá un cómodo abastecimiento de materia prima como así también un fluido movimiento de personal y materiales.

El resultado del análisis arroja que se requieren 197,22 m², mientras que el disponible es de 234,76 m², lo que significa que no será necesario ampliar el espacio de la línea actual.

En cuanto al manejo de materiales, dentro de la planta de SMT será necesario utilizar equipos para el manejo de materiales de área variable, es decir, equipos que se mueve a cualquier área de la instalación. Para trasportar las cajas de materia prima, como así también los productos terminados se utilizan 2 carros de mano de dos ruedas, uno destinado al movimiento de materia prima y otro al de producto terminado (Figura 34).

Figura 34: Carro de ruedas de dos manos Fuente: Elaboración propia

3.3.3. Estimación de la producción

Teniendo en cuenta el pronóstico de la demanda descripto en el Capítulo 1, se determina las unidades de memorias RAM a producir mensualmente. En la Tabla 45 se observa la demanda de equipos nacionales entre los años 2003 y 2014, y la producción de memorias RAM en Grupo Núcleo a partir del año 2011. A partir de dichos valores se calculó el porcentaje del mercado al cuál abasteció la empresa.

Año	Demanda de equipos nacionales	Producción Grupo Núcleo	% de mercado
2005	3.000	-	0,0
2006	6.000	-	0,0
2007	49.000	-	0,0
2008	149.000	-	0,0
2009	260.000	-	0,0
2010	289.000	-	0,0
2011	1.638.000	12.155	0,7
2012	1.274.000	64.711	5,1
2013	1.338.000	123.310	9,2
2014	2.478.000	111.259	4,5

Tabla 45: Participación de Grupo Núcleo en el mercado Fuente: Elaboración propia

Según la proyección realizada, la demanda de equipos nacionales para los años 2015, 2016 y 2017 se encuentra estable e incluso en crecimiento.

El objetivo de la empresa es abastecer el 4,5% de la demanda del mercado nacional en cada año, lo que implica una producción de 120.000 memorias RAM anualmente para el 2015, 144.000 para el 2016 y 168.000 para el 2017. En la Tabla 46 también se observa la capacidad utilizada de la planta en porcentajes. Dicha capacidad se calcula teniendo en cuenta la incorporación de nuevos equipos. En el caso de producir solamente Memorias RAM, la capacidad se duplica, pasando de 20.000 unidades por mes a 40.000.

Año	Demanda de equipos nacionales	% de mercado	Producción objetivo	% capacidad utilizada	
2015	2.663.000	4,5	120.000	25	
2016	3.181.000	4,5	144.000	30	
2017	3.700.000	4,5	168.000	35	

Tabla 46: Proyección de la producción de memorias RAM Fuente: Elaboración propia

En cuanto a la producción de *motherboards*, se sabe que trabajando al 100% de la capacidad y ensamblando únicamente dicho producto se obtienen 6.000 unidades mensualmente. Teniendo en cuenta el porcentaje de capacidad disponible, es decir el que no está siendo utilizado para el ensamble de memorias RAM, se determina la producción máxima anual de *motherboards* trabajando al 100% de la capacidad de producción (Tabla 47).

Año	% de capacidad disponible	Producción anual	% de mercado	
2015	75	72.000	2,70	
2016	70	67.200	2,11	
2017	65	62.400	1,69	

Tabla 47: Proyección de la producción de *motherboards*Fuente: Elaboración propia

A partir de la producción máxima se determina la producción objetivo de *motherboards*. Para ello se utiliza un criterio conservador para los primeros años, dado que es un producto nuevo y la empresa transitará por una curva de aprendizaje en la que será necesario ajustar la producción año a año hasta alcanzar el 100% de la capacidad en el 2017. Se define entonces la producción objetivo anual de *motherboards* tal como se muestra en la Tabla 48.

Año	Demanda de equipos nacionales	Producción objetivo	% de mercado	% capacidad utilizada total
2015	2.663.000	57.600	2,16	80
2016	3.181.000	60.000	1,89	89
2017	3.700.000	62.400	1,69	100

Tabla 48: Producción objetivo de *motherboards*Fuente: Elaboración propia

CAPÍTULO 4: JUSTIFICACIÓN ECONÓMICA

3.4.1 Precio de venta de los productos

El precio de venta de los productos se fija teniendo en cuenta el precio de la competencia. Para ello se determina un valor intermedio de los mismos, ya que se trata de productos de calidad similar por lo que no es posible establecer un precio superior al de la competencia.

El relevamiento de precios determina los valores que se muestran en la Tabla 49.

	Precio de Venta Mayorista (US\$)		
Competidor	Motherboard	Memoria RAM	
Grupo Núcleo	103,05	62,37	
Novatech	108,2	61,83	
PC Arts	80,86	49,94	
Depot Computers	104,64	59,45	

Tabla 49: Precio de venta mayorista en dólares de los competidores potenciales

Fuente: Elaboración propia

3.4.2 Estimación de la Inversión Fija

La producción anual de Memorias RAM y *Motherboards* se ha estimado en 168.000 y 62.400 unidades, respectivamente, para el año 2017. Se estima la inversión considerando el incremento de producción para las Memorias RAM y la producción anual de *motherboards*. Para las Memorias RAM, se utiliza como punto base la producción anual del 2017, lo que representa la planta de SMT operando al 100%, resultando el incremento en 56.741 unidades.

La incorporación del Motherboard como nuevo producto y el aumento de la producción de Memorias RAM se debe principalmente a suplir la demanda de un

sector del mercado electrónico poco desarrollado, en el cual si bien hay competidores, estos son pocos y se encuentran en proceso de desarrollo. Además, se decide la incorporación de Motherboard puesto a que se puede utilizar el 100% de la inversión actual debiendo incorporar pocas maquinarias, mientras que si se seleccionaba cualquier otro producto; placa de video, placa de red, microprocesadores, entre otros; no se podría haber utilizado el 100% de la instalación existente.

Esta inversión incremental es la que se genera por la modificación de la planta para producir *motherboards* y el incremento de memorias RAM. Las inversiones que ya fueron realizadas anteriormente por la planta, van a ser aprovechadas para este proyecto, pero no consideradas en el cálculo económico

En la Tabla 50 se observa la utilización de equipos para ambos productos y se presenta el prorrateo de la inversión según los ingresos por venta de los productos. Cabe destacar que si bien los equipos SPI KY8030 y FX3 Chip Shooter no son indispensables para el ensamble de memorias RAM, su utilización permite duplicar la capacidad de producción mencionada anteriormente.

Para ello, a partir del precio de venta de los productos, 62,37 US\$ para la memoria RAM y 103,05 US\$ para el *motherboard*, se realiza el análisis económico considerando el incremento de unidades a producir del año 2017, lo que representa la planta produciendo al 100%. Para determinar el ingreso por ventas incremental, se utilizaron las unidades incrementales estimadas de producción para el año 2017, 56.741 y 62.400 unidades respectivamente. Para la memoria RAM el ingreso por venta resulta en 3.539.099,66 US\$ y para el *motherboard* de 6.430.372,88 US\$; resultando un total de 9.969.472,54 US\$.

Prorrateo Según Ingresos por Ventas		Utilización		Prorrateo de la inversión en equipos por productos		
Equipo	Precio [US\$]	Memoria RAM	Motherboard	Memoria RAM [US\$]	Motherboard [US\$]	
SPI KY8030	131.969,00	Х	Х	46.848,16	85.120,84	
FX3 Chip Shooter	727.000,00	Х	Х	258.080,40	468.919,60	
Router	120.000,00	-	Х	-	120.000,00	
Feeders	136.000,00	-	Х	-	136.000,00	
Costo Equipos 1.114.969,00				304.928,56	810.040,44	

Tabla 50: Prorrateo según ingresos por ventas Fuente: Elaboración propia

En la Tabla 51 se estima la inversión fija mediante el método de estimación por factores. Dado que es una planta de ensamble de componentes electrónicos, no requiere de tuberías de proceso (f1). La instrumentación es parcialmente automatizada (f2), puesto que parte de la misma se hace de forma visual y directa mediante los operarios del proceso. El factor relacionado con el edificio de fabricación (f3) es cero ya que no hay inversiones incrementales por obras civiles. La empresa no requiere de planta de servicios (f4), dado que el único servicio utilizado para la producción es la electricidad y este es provisto por EDEA.SA.

En cuanto a los factores indirectos, la ingeniería y construcción (fl₁) es inmediata, siendo el factor de tamaño (fl₂) una unidad comercial pequeña. En cuanto a las contingencias, se consideraron variaciones imprevistas debido a la falta de experiencia en el ensamble de *motherboards*.

IE = Costo Eq.*1,2 =	US\$ 1.337.962,80	
$IF = IE^*(1 + \sum f_i)^*(1 + \sum f I_i)$		
Factores Directos (f _i)	Valor	Observaciones
f ₁	-	No hay tuberías
f_2	0,075	Control parcialmente automatizado
f ₃	-	Edificio existente
f ₄	-	No se requiere producción de servicios
f ₅	-	No hay conexiones
$\sum f_i =$	0,075	
Factores Indirectos (fl _i)	Valor	Observaciones
fl ₁	0,275	Ingeniería inmediata
fl_2	0,100	Unidad comercial pequeña
fl ₃	0,250	Variaciones imprevistas
$\sum f I_i =$	0,625	
IF=	US\$ 2.337.253,766	
Factor de relación	2,096	

Tabla 51: Estimación de la inversión fija Fuente: Elaboración propia

Una vez estimada la inversión fija, se calcula el factor de relación, que resulta de dividir la inversión fija por el costo de equipos. Como figura en la Tabla 51, el factor de relación es 2,10.

Finalmente, en la Tabla 52 se muestra la estimación de la inversión fija por producto.

Memoria RAM (MR)	I _{MR} =	US\$	639.206,492
Motherboard (MB)	I _{MB} =	US\$	1.698.047,274
	IF =	US\$	2.337.253,766

Tabla 52: Inversión por producto Fuente: Elaboración propia

3.4.3 Estimación de los costos de producción

Para el cálculo de los costos de producción se tiene en cuenta únicamente los costos incrementales requeridos para el régimen nominal luego de la ampliación

y modificación de la planta de SMT, con lo cual se considera solamente la cantidad de producción incremental.

Se considera la cotización del dólar 8,85\$ al día 4 de Mayo del 2015.

3.4.3.1 Costos variables

Para el cálculo de los costos variables se realizan las siguientes consideraciones:

- No hay costo de laboratorio ya que el testeo de los productos ensamblados lo realizan los operarios.
- En cuanto al costo de regalías y patentes tampoco se tiene en cuenta ya que se trata de diseños propios, es decir, la empresa no paga un canon ni por el producto, ni por el proceso productivo.
- El costo de suministros es cero ya que todos los materiales necesarios como lubricantes y aceites fueron considerados dentro de los costos de mantenimiento.
- El costo de mano de obra se considera un costo fijo y su cálculo se detalla en la sección 3.4.2.2.

3.4.3.1.1 Costo de Componentes y Envases

En la Tabla 53 se especifica la cantidad de componentes, el costo total de los mismos, y los envases requeridos por cada producto junto con su costo.

			Envases			
	Componentes [c]		Bolsas [b]		Blísteres [bl]	
	Cantidad [c/u]	Costo [US\$/u]	Cantidad [b/u]	Costo [US\$/b]	Cantidad [bl/50u]	Costo [US\$/bl]
Motherboards	241	57,8	1	0,1	-	-
Memorias	145	35,1	-	-	1	0,25

Tabla 53: Costo materia prima y envases

Fuente: Elaboración propia

Cada blíster plástico tiene una capacidad de 50 memorias, es decir que el costo del blíster se divide entre 50 unidades, lo cual significa un costo de envase de 0,005 US\$ por memoria.

El costo de materia prima de cada producto se calculó en base a datos de Grupo Núcleo. El mismo incluye la merma de materia prima, que varía entre el 2 y el 4% para cada componente.

Para el caso particular del *motherboard*, se detallan en la Tabla 54 los componentes más significativos del costo de materia prima. De los 241 componentes requeridos para el ensamble de un *motherboard*, hay 8 componentes que representan aproximadamente el 60% de dicho costo (34,0312 US\$). El costo restante, 23,7688 US\$ corresponde a 233 componentes que individualmente no superan los 0,85 US\$. Para más información sobre los componentes de cada producto ver ANEXO II – Lista estructurada de materiales.

Descripción componente	Cantidad Requerida	Costo Unitario Con Merma (US\$)	Costo por Mother (US\$)
IC SOC MARCA : S/M MODELLO : VALLEYVIEW-M-1 Origin : CHINA	1	26,1556	26,1556
IC TPM.NPCT421IA1WXTSSOP 28P.3.3VHF.LEAD-FREE.NUVOTON	1	1,6197	1,6197
IC EC.IT8528VG/FXVFBGA 128P3.3VHF.LEAD-FREE.ITE	1	1,2057	1,2057
IC CODEC.ALC283-CGMQFN 48PLEAD-FREE(RoHS/HF).REALTEK	1	1,0892	1,0892
IC CONV.RTD2132R-CGQFN 32P.3.3VLEAD-FREE.REALTEK	1	1,0435	1,0435
IC USB.GL850G-37QFN 28PLEAD-FREE(RoHS).GENESYS	2	0,5112	1,0224
IC SENSOR.ADXL345BCCZ-RL7LGA 14P08A345110-10.HF.LEAD-FREE.	1	0,9933	0,9933
IC TRANSLATOR.PCA9306DCURVSSOP 8PLEAD-FREE.TI	2	0,4509	0,9019
			34,0312

Tabla 54: Detalle de principales componentes del *motherboard*Fuente: Elaboración propia

3.4.3.1.2 Costo de Supervisión

Se cuenta con un supervisor por jornada laboral y no se necesita la incorporación de otro, ya que las responsabilidades y tareas no se verán afectadas en gran medida.

3.4.3.1.3 Costo de Servicios

Consumo eléctrico:

Productos	SPI KY8030	FX3 Chip Shooter	Router		Total
Memoria RAM	26,4	14,4		-	40,8
Motherboard	26,4	14,4		2,4	43,2

Tabla 55: Consumo eléctrico de equipos Fuente: Elaboración propia en base a datos de EDEA

El consumo de energía de las máquinas distribuido por producto es 40,8 kWh para la memoria RAM y 43,2 kWh para el *motherboard* (Tabla 55). Teniendo en cuenta el cuadro tarifario con subsidio de EDEA, el valor del kWh es de 0,1534\$/kWh, es decir 0,0173 US\$/kWh. Considerando que utiliza el nivel de producción de la planta al 100% de capacidad (año 2017), las unidades incrementales a producir son 56.741 y 62.400 respectivamente. En la Tabla 56, se observa el costo anual incremental de electricidad por producto para el año 2017, el cual resulta 192,24 US\$ para la memoria RAM y 1.119,25 US\$ para el *motherboard*. Para los años 2015, 2016, se calculó de igual manera.

Productos	Consumo Equipos [kWh]	Costo [US\$/kWh]	Producción [h/u]	Producción [u/año 2017]	Total [US\$/año 2017]
Memoria RAM	40,8	0,0173	0,0048	56.741	192,24
Motherboard	43,2	0,0173	0,024	62.400	1.119,25

Tabla 56: Costo anual de electricidad por producto
Fuente: Elaboración propia en base a consumo y datos de EDEA

3.4.3.1.4 Costo de mantenimiento

En la Tabla 57 se muestra el costo de mantenimiento distribuido en cada producto. Las tareas de mantenimiento de las máquinas serán tareas básicas como limpieza, lubricación, entre otras. Por esta razón se ha estimado como el 0,1% de la inversión fija, teniendo en cuenta los datos brindados por el responsable de SMT de Grupo Núcleo.

	Motherboard	Memoria RAM
Producción [u/año]	62.400	56.741
% de IF	0,1	0,1
IF [US\$]	1.698.047	639.206
Costo Mantenimiento [US\$/año]	1.698	639
Costo Unitario Mantenimiento [US\$/u]	0,0272	0,0113

Tabla 57: Costos de mantenimiento Fuente: Elaboración propia

3.4.3.2 Costos fijos

Dentro de los costos fijos, el costo de impuestos es cero dado que no hay obras civiles incrementales. Tampoco hay costo de investigación y desarrollo.

3.4.3.2.1 Costo de Mano de Obra

El costo de mano de obra es considerado en costo fijo para el rango de producción incremental entre los años 2015 y 2017, dado que se requiere la incorporación de 1 operario para afrontar la producción incremental del año 2015 y también es suficiente para afrontar la producción incremental del año 2017.

En el 2014 la planta operó con 3 operarios en un único turno de 8 horas por día, encargados de abastecer la línea de producción, supervisar la misma y llevar a cabo tareas en el sector de re-trabajo.

A partir de la modificación planteada, se requiere la incorporación de 1 operario en el turno de trabajo, dado que los 3 operarios actuales tienen tiempo ocioso que será consumido luego de la ampliación.

Los empleados serán capacitados adecuadamente, para desempeñarse eficientemente en su nuevo rol de trabajo evitando la presencia de tiempos ociosos y disminuyendo el tiempo de aprendizaje.

El costo de mano de obra se calcula de acuerdo al convenio colectivo de trabajo del Sindicato de Empleados de Comercio. (Sindicato de Empleados de Comercio, 2014)

Se selecciona la categoría Personal auxiliar especializado, subcategoría b: Art. 9º.- Personal auxiliar especializado: Se considera personal auxiliar especializado

a los trabajadores con conocimientos o habilidades especiales en técnicas o artes que hacen al giro de los negocios de la empresa de la cual dependen.

Considerando que para cumplir con los objetivos de producción fijados anteriormente se trabaja 1 turno de 8 horas por día, el incremento en la mano de obra será en 1 operario. Teniendo en cuenta la cotización del dólar, el salario de 9.608,22\$/mes resulta en 13.028,04 US\$/año. El tiempo de hora hombre por producto se encuentra en el ANEXO III –

	Motherboard	Memoria RAM		
Producción [u/mes]	62.400,00	56.741,00		
Precio Hora-Hombre [US\$/H.H]	5,65	5,65		
Costo Unitario M.O [US\$/u]	0,18	0,04		

Tabla 58: costos de mano de obra Fuente: elaboración propia

3.4.3.2.2 Costo de depreciación

En la Tabla 59 se muestra el Costo de depreciación por el método de la línea recta. Para determinar el valor residual de los equipos se realiza un análisis de mercado global del valor de equipos usados. Dicho análisis se realiza en conjunto con el responsable de SMT de Grupo Núcleo. Se obtiene un valor residual representativo de cada equipo en particular, considerando que los equipos incorporados tendrán 3 años de uso al momento de calcular el valor residual. Luego, se obtiene el porcentaje que representa dicho valor de reventa, y se realiza un promedio de los porcentajes de todos los equipos a incorporar obteniendo un porcentaje de valor residual global representativo. El resultado del análisis arroja un valor residual en porcentaje del 37% para equipos de 3 años de uso.

	Motherboard	Memoria RAM
Producción [u/año]	62.400	56.741
IF [US\$]	1.698.047	639.206
Valor Residual (L) [US\$]	629.976	237.146
Vida Útil [años]	3	3
Dep. [US\$/año]	356.024	134.020

Tabla 59: Costo de depreciación método línea recta Fuente: Elaboración propia

3.4.3.2.3 Costos de seguros

Se cotizó el seguro contra todo riesgo de los equipos incorporados, resultando el valor de seguro \$ 75.429,71 anuales (Ver ANEXO IV – Cotización seguro), lo que equivale a 8.523,13 US\$/año.

	Motherboard	Memoria RAM	
Producción [u/año]	62.400	56.741	
Inversión fija [US\$]	1.698.047	639.206	
Costo anual (Mb + Mram)	8.523,13		
Costo Seguros [US\$/año]	4.463,98	4.059,15	

Tabla 60: Costo de seguros Fuente: Elaboración propia

3.4.3.2.4 Costo de financiación

Se decidió financiar 5.000.000 \$, lo que equivale a 564.971,75 US\$ de la Inversión Fija mediante un crédito del FoNDyF (ver ANEXO V - Fondo Nacional para el Desarrollo y Fortalecimiento de las MiPyMEs (FONDyF)). Los gastos de evolución del crédito son los siguientes:

Modalidad: En pesos

Monto a financiar: 5.000.000 \$ = 564.971,75 US\$

Régimen de amortización: Sistema Francés

Período de gracia: 0 (cero) meses

Interés: TNA 14% fija

El tiempo del préstamo es de 3 años (36 meses).

De la TNA se obtiene la ief, la cual asciende a 14,66%

Sister	Sistema Francés							
Año	Cuota [US\$]	Interés [US\$]	Amortización [US\$]	Saldo deuda [US\$]				
0		micros [CC4]	7 HITOTALEAGIGIT [004]	564.971,75				
1	246.064,89	82.844,61	163.220,27	401.751,48				
2	246.064,89	58.910,81	187.154,07	214.597,40				
3	246.064,89	31.467,48	214.597,40	-				

Tabla 61: Financiación sistema francés
Fuente: Elaboración propia

3.4.3.2.5 Costo de ventas y distribución

En la Tabla 62 se muestra el costo de venta y distribución el cual se estimó como un porcentaje de las ventas totales, teniendo en cuenta el precio de venta fijado anteriormente. Para esto, se tomó un 1% de las ventas totales.

	Motherboard	Memoria RAM
Producción [u/año]	62.400	56.741
Precio de Venta [US\$/u]	103,05	62,37
% PV	0,01	0,01
Costo V&D Anual [US\$/año]	7.716,45	4.246,92

Tabla 62: Costos de venta y distribución Fuente: Elaboración propia

3.4.3.2.6 Costo de administración y dirección

En la Tabla 63 se muestra el costo de administración y dirección para cada uno de los productos. La empresa tendrá un bajo nivel de salarios y gastos generales, asesoramiento legal, servicios médicos y de seguridad, entre otros. Por lo tanto, se lo estimó como el 20% del costo de mano de obra.

	Motherboard	Memoria RAM
Producción [u/año]	62.400	56.741
Costo Unitario M.O [US\$/u]	0,18	0,04
% M.O	0,20	0,20
Costo A&D Anual [US\$/año]	2.258,20	421,49

Tabla 63: Costo de administración y dirección Fuente: Elaboración propia

3.4.3.2.7 Costo total de producción

En la Tabla 64 se muestra un resumen de los costos variables y fijos para cada producto y luego el costo total incremental de los mismos.

			Memoria RAM				Motherboard		
	Incremento Producción (ΔP) [u/año]		56.741				62.400		
		Costo Unitario [US\$/u]	Costo Mensual [US\$/mes]	Costo [US\$	Anual /año]	Costo Unitario [US\$/u]	Costo Mensual [US\$/mes]	_	osto Anual US\$/año]
cv	Costos Variables								
1	Materia Prima	35,1000	165.967,43	1.9	91.609,10	57,80	300.560,00		3.606.720,00
2	Envases	0,0050	23,64		283,71	0,10	520,00		6.240,00
4	Supervisión	-	-		-	-	-		-
5	Servicios	0,0034	16,02		192,24	0,02	93,27		1.119,25
6	Mantenimiento	0,0113	53,27		639,21	0,03	141,50		1.698,05
7	Suministros	-	-		-	-	-		-
8	Laboratorio	-	-		-	-	-		-
9	Regalias y Patentes	-	-		-	-	-		-
	Suma CV	US\$ 35,12	US\$ 166.060,35	US\$ 1.9	92.724,25	US\$ 57,95	US\$ 301.314,77	US\$	3.615.777,29
CF	Costos Fijos								
1 2	Mano de Obra [con Cargas Sociales] Inversión	0,0371	175,62		2.107,47	0,18	940,92		11.291,02
1.1	Depreciación	2,3620	11.168,36	1	34.020,29	5,71	29.668,66		356.023,91
1.2	Impuestos	-	-		-	-	-		-
1.3	Seguros	0,0411	194,25		2.330,96	0,10	516,01		6.192,17
2	Financiación	0,3993	1.888,07		22.656,85	0,96	5.015,65		60.187,76
3	Ventas y Distribución	0,0748	353,91		4.246,92	0,12	643,04		7.716,45
4	Administración y Dirección	0,0074	35,12		421,49	0,04	188,18		2.258,20
	Investigación y Desarrollo	-	-		-	-	-		-
	Suma CF	US\$ 2,92	US\$ 13.815,33	US\$ 1	65.783,98	US\$ 7,11	US\$ 36.972,46	US\$	443.669,51
	COSTO TOTAL INCREMENTAL = $\Delta CV + \Delta CF$	US\$ 38,04	US\$ 179.875,69	US\$ 2.1	58.508,24	US\$ 65,06	US\$ 338.287,23	US\$	4.059.446,80

Tabla 64: Costos de producción para el año 2017

Fuente: Elaboración propia

La Figura 35 muestra la composición del costo total incremental en costos fijos y variables incrementales.

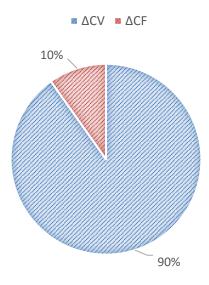


Figura 35: Estructura de costos incrementales
Fuente: Elaboración propia

En la Figura 36 se observa la estructura de costos variables incrementales, siendo el de materia prima el más significativo. Los costos variables incrementales restantes representan menos del 1% del total.

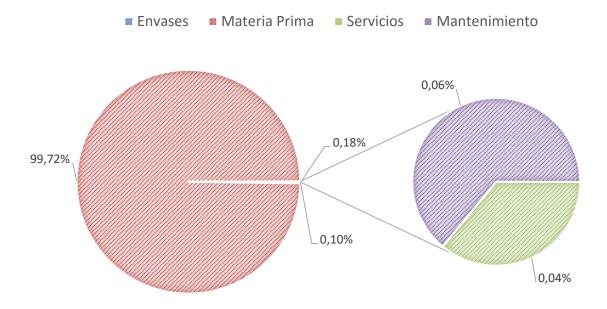


Figura 36: Costos variables incrementales
Fuente: Elaboración propia

En la Figura 37 se puede observar la estructura de costos fijos incrementales, siendo el más representativo el costo de depreciación, seguido por el de financiación.

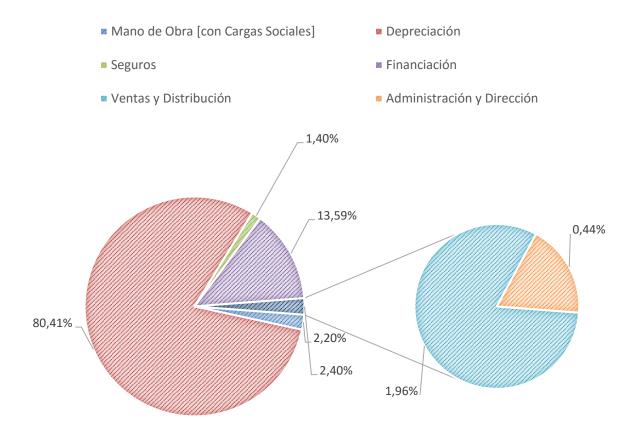


Figura 37: Costos fijos incrementales
Fuente: elaboración propia

3.4.4 Cuadro de fuentes y usos de fondos

En la Tabla 65 se puede observar la proyección de costos e ingresos incrementales para los años 2015, 2016 y 2017.

En la Tabla 66 y Tabla 67 se pueden observar los flujos de caja incrementales del proyecto y del inversionista respectivamente, producto de la ampliación de la planta.

Año	2015		2016		2017	
Producto	Memoria RAM	Motherboard	Memoria RAM	Motherboard	Memoria RAM	Motherboard
Producción Incremental	8.741	57.600	32.741	60.000	56.741	62.400
Precio de Venta [US\$]	62,37	103,05	62,37	103,05	62,37	103,05
Ingresos Incrementales [US\$]	545.201,36	5.935.728,81	2.042.150,51	6.183.050,85	3.539.099,66	6.430.372,88
Costo Unitario incremental [US\$/u]	54,09	65,65	40,18	65,34	38,04	65,06
Costo anual incremental [UU\$/año]	472.764,87	3.781.310,09	1.315.636,56	3.920.378,45	2.158.508,24	4.059.446,80

Tabla 65: Proyección costos e ingresos incrementales

Fuente: Elaboración propia

2014	2015	2016	2017
'			
	6.480.930	8.225.201	9.969.473
	3.681.186	4.687.060	5.696.443
	490.044	490.044	490.044
	4.171.230	5.177.104	6.186.488
	2.309.700	3.048.097	3.782.985
35%	808.395	1.066.834	1.324.045
	1.501.305	1.981.263	2.458.940
	490.044	490.044	490.044
-2.337.254			
-920.297			
-3.257.550	1.991.349	2.471.307	3.816.106
57%			
	-2.337.254 -920.297 - 3.257.550	3.681.186 490.044 4.171.230 2.309.700 35% 808.395 1.501.305 490.044 -2.337.254 -920.297 -3.257.550 1.991.349	3.681.186 4.687.060 490.044 490.044 4.171.230 5.177.104 2.309.700 3.048.097 35% 808.395 1.066.834 1.501.305 1.981.263 490.044 490.044 -2.337.254 -920.297 -3.257.550 1.991.349 2.471.307

Tabla 66: Flujo de caja incremental del proyecto Fuente: Elaboración propia

FUJOS DE CAJA INCREMENTALES DEL INVERSIONISTA	2014	2015	2016	2017
A. Ingresos anuales				
Total A		6.480.930	8.225.201	9.969.473
B. Egresos Anuales				
C. Financiación		82.845	58.911	31.467
C. Prod s/d		3.681.186	4.687.060	5.696.443
Depreciación		490.044	490.044	490.044
Total B		4.254.075	5.236.015	6.217.955
BNAI		2.226.855	2.989.186	3.751.518
Impuestos	35%	779.399	1.046.215	1.313.031
Beneficio Neto		1.447.456	1.942.971	2.438.486
Depreciación		490.044	490.044	490.044
IF	-2.337.254			
Iw (3 meses)	-920.297			
Préstamo	564.972			
Amortización del Préstamo		-163.220	-187.154	-214.597
FC INCREMENTAL DEL INVERSIONISTA	-2.692.579	1.774.280	2.245.861	3.581.054
TIR Incremental del inversionista	65%			

Tabla 67: Flujo de caja incremental del inversionista Fuente: Elaboración propia

3.4.5 Estimación del retorno sobre la inversión

Para analizar la rentabilidad, se debe comparar la tasa de retorno incremental sobre la inversión (TIR incremental del inversionista) con:

- El Costo del Capital Propio (Ke).
- El Costo Promedio Ponderado de Capital (CPPC).

El costo del capital propio en dólares (K_e) promedio para una empresa del rubro de la electrónica (Grupo IV: Empresas de Riesgo Medio Alto) es 34,40% (Merlo, 2014).

Para el cálculo del CPPC se tuvo en cuenta el porcentaje de capital propio y el porcentaje de deuda, multiplicándolos por el costo del capital propio (K_e) y el costo de capital de deuda (K_d) respectivamente. Se obtuvo un valor de CPPC de 30,09%

Debido a que la TIR del inversionista obtenida (51%) es ampliamente mayor que el K_e (34,4%) y del CPPC (30,09%), el proyecto resulta rentable.

3.4.6 Análisis del tiempo de repago

A fines de complementar la rentabilidad del proyecto se considera el tiempo de repago (Figura 38).

Figura 38: Tiempo de repago Fuente: Elaboración propia

Se parte de la inversión fija depreciable en el año cero, y se suman los flujos de caja (Tabla 66). Se obtiene un tiempo de repago de 11 meses. El proyecto resulta rentable ya que el tiempo de repago es menor a 1,5 años.

SECCIÓN 4: CONCLUSIONES

SECCIÓN 4 110

CONCLUSIONES

Se concluye que, según el estudio de la demanda derivada de computadoras portátiles, la participación en el mercado de equipos nacionales es mayor que la de equipos importados y se encuentra en crecimiento en los últimos años. Esta situación resulta un gran atractivo para el presente proyecto.

El estudio de la factibilidad económica y la necesidad de diseñar la nueva distribución en planta para incorporar el ensamble de *motherboards*, resultan favorables. Teniendo en cuenta el pronóstico de la demanda se define una producción objetivo de memorias RAM de 120.000, 144.000 y 168.000 unidades para los años 2015, 2016 y 2017 respectivamente. En cuanto a la producción objetivo de *motherboards*, esta resulta de 57.600, 60.000 y 62.400 unidades.

Previo al estudio económico se lleva a cabo el diseño de la nueva distribución en planta. El diseño de instalaciones incluye el manejo de materiales y la distribución de los equipos necesarios para la producción a partir de la decisión de ampliar la línea productiva para poder incorporar la producción de *motherboards*. Mediante la utilización de distintas herramientas de estudio se define una alternativa de distribución en planta que optimiza las distancias recorridas y los flujos cruzados.

Luego se calculan los costos totales incrementales que se genera por la modificación de la planta para producir *motherboards* y el incremento de memorias RAM; el costo incremental anual para el año 2017 para las memorias RAM resulta de U\$S 2.202.404,54 y para los *motherboard* U\$S 4.176.057,01. En cuanto a los ingresos incrementales para el año 2017 esos resultan de U\$S 3.539.099,66 y de U\$S 6.430.372,88 para las memorias RAM y los *motherboards*, respectivamente.

El proyecto de inversión destinado a la modificación y ampliación de la planta de SMT de Grupo Núcleo resulta ser rentable bajo las condiciones en las que fue planteado ya que la TIR del proyecto (45%) y la TIR del inversionista (51%) son ampliamente mayores que el K_e (34,4%). Además, con el objetivo de completar el análisis de la TIR del proyecto se considera el tiempo de repago, el cual resulta de 11 meses. Al ser este valor menor a la mitad de la vida útil del proyecto (1,5 años), el proyecto resulta rentable.

SECCIÓN 4 111

Por todo lo anteriormente mencionado, se llega a la conclusión que el caso planteado se trata de una oportunidad atractiva que debería ser aprovechada por la empresa Grupo Núcleo.

SECCIÓN 4 112

SECCIÓN 5: BIBLIOGRAFÍA

SECCIÓN 5

BIBLIOGRAFÍA

- BNA. (s.f.). *Banco de la Nación Argentina*. Obtenido de http://www.bna.com.ar/pymes/py_creditos.asp
- CADIEEL. (2014). Cámara Argentina de Industrias Electrónicas, Electromecánicas y Luminotécnicas. Obtenido de http://www.cadieel.org.ar/esp/nota.php?idContenido=17435
- CAMOCA. (2014). Cámara Argentina de Máquinas de Oficina Comerciales y Afines.

 Obtenido de http://www.camoca.com.ar/camocainstitucional2014.pdf
- David, F. (2003). Conceptos de administración estratégica. Novena Edición.
- Dwyer, F. R., Tanner, J. F., Sauri, J. H. L., Arellano, J. A. V., & Hernández, M. E. M. (2007). *Marketing Industrial: conexión entre la estrategia, las relaciones y el aprendizaje.* McGraw Hill, 3° Edición.
- EDEA. (s.f.). Obtenido de http://www.edeaweb.com.ar/
- Grupo Núcleo. (2014). Obtenido de http://www.nucleodistribuidora.com/empresa/
- Hamdy, T. (2004). *Investigación de Operaciones*. Pearson Prentice-Hall, Séptima Edición.
- Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K. (2008). *Administración de operaciones: procesos y cadena de valor.* México: Pearson Education.
- Merlo, L. M. (2014). Cuál es la Tasa de Corte en la Argentina?
- Ministerio de Industria. (2015). Obtenido de FoNDyF: http://www.industria.gob.ar/fondyf/caracteristicas-del-credito/
- OIT. (1998). Introducción al Estudio del Trabajo. 4º Edición.
- Robbins, S. P., & Coulter, M. (2010). Administración. Pearson Educación.
- Rudd, D. F., Watson, C. C., Sancho, J. L. S., & López, J. C. . (1976). *Estrategia en Ingeniería de procesos.* Editorial Alhambra.
- Sindicato de Empleados de Comercio. (Septiembre de 2014). Obtenido de http://www.seczaweb.org.ar/escalas.htm
- Stephens, M., & Meyers, F. E. . (2006). *Diseño de instalaciones de manufactura y manejo de materiales*. Pearson Prentice Hall, 3º edición.
- UNCUYO, & FCE. (2013). Crystal Ball 11.1.

SECCIÓN 5 114

Wikipedia. (2014). *Memoria RAM*. Obtenido de http://es.wikipedia.org/wiki/Memoria_de_acceso_aleatorio

Wikipedia. (2014). Motherboard. Obtenido de www.wikipedia.org/wiki/Placa_base

Zugarramurdi, A. P. (2003). Apuntes de Rentabilidad.

SECCIÓN 5 115

SECCIÓN 6: ANEXOS

ANEXO I – Informe "Predictor" Crystal Ball

Para pronosticar la demanda de computadoras portátiles para los años 2015, 2016 y 2017, se utiliza la herramienta "Predictor" del software Crystal Ball. Para ello, al tratarse de datos no estacionales, se utilizaron los métodos Modelo Autorregresivo Integrado de Media Móvil (ARIMA), Suavizado Exponencial Simple y Doble, y Promedio Móvil Simple y Doble.

A continuación se presenta el informe generado por *Crystal Ball* en el que se observa en el que el mejor método, es decir, el que presenta menor RMSE, es el ARIMA para los equipos importados y el Suavizado Exponencial Doble para los equipos nacionales.

Informe de Crystal Ball: Predictor

Resumen:

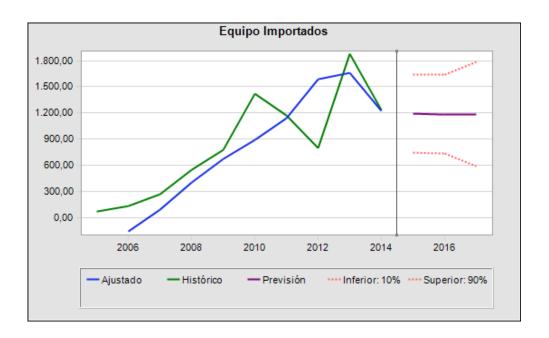
Atributos de datos:

Número de serie 2 Los datos están en periodos

Prefs ejecución:

Periodos en previsión 3
Introducir valores que faltan Desactivado
Ajustar valores atípicos Desactivado
Métodos utilizados Métodos no estacionales
Métodos de ARIMA

Técnica de previsión Previsión estándar


Medida de error RMSE

Serie de Predictor

Serie: Equipo Importados

Resumen:

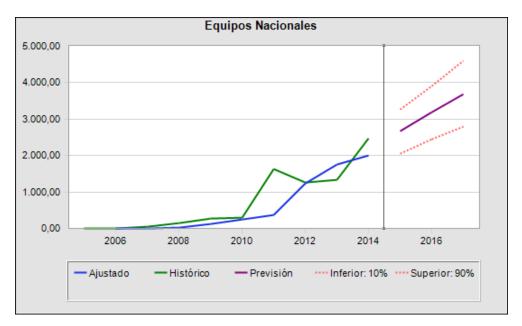
Mejor método ARIMA(1,1,2) Medida de error (RMSE) 350,27

Resultados de previsión para equipos importados:

Fecha	Inferior: 10%	Previsión	Superior: 90%
2015	743,27	1.192,16	1.641,06
2016	732,65	1.187,76	1.642,86
2017	586,17	1.185,95	1.785,73

Datos históricos:

Estadísticas	Datos históricos
Valores de datos	10
Mínimo	74,00
Media	833,10
Máximo	1.883,00
Desviación estándar	596,00
Ljung-Box	3,78 (Sin tendencia)
Estacionalidad	No estacional (Detección automátic
Valores filtrados	0


Precisión de previsión:

Método	Rango	RMSE
ARIMA(1,1,2)	Mejor	350,27
Suavizado exponencial doble	2.°	446,77
Suavizado exponencial simple	3.º	470,29

Serie: Equipos Nacionales

Resumen:

Mejor método Suavizado exponencial doble Medida de error (RMSE) 477,39

Resultados de previsión para equipos nacionales:

Fecha	Inferior: 10%	Previsión	Superior: 90%
2015	2.051,25	2.663,04	3.274,84
2016	2.450,78	3.181,59	3.912,40
2017	2.794,08	3.700,14	4.606,20

Datos históricos:

Estadísticas	Datos históricos
Valores de datos	10
Mínimo	3,00
Media	748,40
Máximo	2.478,00
Desviación estándar	869,97
Ljung-Box	4,64
Estacionalidad	No estacional
Valores filtrados	0

Precisión de previsión:

Método	Rango	RMSE
Suavizado exponencial doble	Mejor	477,39
Suavizado exponencial simple	2.º	597,31
ARIMA(0,1,0)	3.º	603,79

ANEXO II – Lista estructurada de materiales

Nivel	Número de parte	Nombre de la parte	Cantidad por unidad	Fabricar o Comprar
0	1	Memoria RAM	1	Fabricar
.1	A1	Ensamble de la placa base y la pasta de soldar		Fabricar
2	2	Placa Base	1	Comprar
2	3	Pasta de soldar		Comprar
.1	4	IC EC.IT8528VG/FXVFBGA 128P3.3VHF.LEAD-FREE.ITE	1	Comprar
.1	5	IC LAN.RTL8105E-VL-CGQFN 48PHF.LEAD-FREE.REALTEK	1	Comprar
.1	6	IC USB.GL850G-37QFN 28PLEAD-FREE(RoHS).GENESYS	2	Comprar
.1	7	IC SPI ROM.64M.W25Q64FWSSIG-TSO 8P1.65-1.95V	1	Comprar
.1	8	IC CONV.RTD2132R-CGQFN 32P.3.3VLEAD-FREE.REALTEK	1	Comprar
.1	9	IC CONV.G5310QN1UQFN 28PHF.LEAD-FREE.GMI	2	Comprar
.1	10	IC REG.G2997F51UMSOP 8P(FD)HF.LEAD-FREE.GMT	1	Comprar
.1	11	IC SWITCH.G524B1T11USOT-23-5.2.5AHF.LEAD-FREE.GMT	4	Comprar
.1	12	IC REG.APU8836Y5-HFSOT23-5.ADJ.300mA08A883650- 10.HF.LEAD-FREE.APEC	3	Comprar
.1	13	IC AMPR.G1331T11USOT-23-5LEAD-FREE.GMT	1	Comprar
.1	14	IC INVERTER.G5930RB1UTDFN 6PHF.LEAD-FREE.GMT	1	Comprar
.1	15	IC PWM.OZ8296LN-(A2)QFN 32PLEAD- FREE(RoHS/HF).O2MICRO	1	Comprar
.1	16	IC CONV.G5330AQN1UQFN 28PHF.LEAD-FREE.GMI	1	Comprar
.1	17	IC CONV.G5332AQP1UQFN 21PHF.LEAD-FREE.GMI	1	Comprar
.1	18	IC PWM.ISL9520HRTZTQFN 28PHF.LEAD-FREE.INTERSIL	1	Comprar
.1	19	ESD PTOR.EGA10402V05AHSMD 040220A210402-10	3	Comprar
.1	20	SCHOTTKY.BAT54SOT-2320G954002-20.HF.LEAD-FREE.DIODES	3	Comprar
.1	21	SCHOTTKY.BAT54T30V.200mASOT-523HF.LEAD-FREE.LISION	1	Comprar
.1	22	DIODE.BAV70T85V.75mASOT-523HF.LEAD-FREE.LISION	2	Comprar
.1	23	MOSFET N-CH.ME2N7002E-GVds=60V,Vgs=20V.Id=300mA.Rds(on)	5	Comprar
.1	24	MOSFET P-CH.P5103EMGVds=-30V,Vgs=-20V.Id=-4.5A.Rds(on)	2	Comprar
.1	25	MOSFET N-CH.FMSBSS138-HVds=50V,Vgs=20V.Id=0.2A.Rds(on)	1	Comprar
.1	26	MOSFET P-CH.PA503EMGVds=-30V,Vgs=20V.Id=-2A.Rds(on)	2	Comprar

.1	27	MOSFET DUAL N-CH.ME2N7002F1KW- GVds=30V,Vgs=20V.Id=0.2A.Rds(on)	16	Comprar
.1	28	MOSFET N-CH.P2003BEADFN3*3.30V/10A20AA20031-10	2	Comprar
.1	29	MOSFET N-CH.SSM3K37MFVVds=20V,Vgs=10V.ld=250mA.Rds(on)	14	Comprar
.1	30	TR PNP.MMBT2907ATG-5T3R60V.600mASOT-523HF.LEAD-FREE.LISION	1	Comprar
.1	31	LED.BLUE.LTST-C193TBKT-5A 5mA20A419300-00LEAD-FREE	5	Comprar
1	32	LED.BLUE+RED.LTST-C195TBJRKT-ASMD 4P5mA20A419501-00	1	Comprar
1	33	T/C.100uF.6.3V.20%6TPE100MAZB.SMD B216A710706-M1	2	Comprar
.1	34	N/C.47uF.6.3V.20%NOJB476M006RWJV.SMD BLEAD-FREE(RoHS/HF).AVX	1	Comprar
.1	35	C/C.10uF.25V.10%X5RSMD 120615A110625-K2LEAD-FREE(RoHS/HF)	14	Comprar
.1	36	C/C.1uF.25V.10%X5RSMD 060315AC41058-60LEAD- FREE(RoHS/HF).	7	Comprar
.1	37	C/C.10uF.6.3V.20%X5RSMD 060315A110606-M4LEAD- FREE(RoHS/HF).	48	Comprar
.1	38	C/C.2.2uF.6.3V.10%X5RSMD 060315A122506-K0LEAD- FREE(RoHS/HF).	7	Comprar
.1	39	C/C.1000pF.2KV.10%X7RSMD 180815AC21021-90.HF.LEAD- FREE.	1	Comprar
.1	40	C/C.10pF.25V.5%NPOSMD 040215A11001H-B0CALEAD- FREE(RoHS/HF).	1	Comprar
.1	41	C/C.18pF.50V.5%NPOSMD 040215A11801K-BJ0A.HF.LEAD- FREE.	4	Comprar
.1	42	C/C.20pF.50V.5%NPOSMD 040215A120050-J0.HF.LEAD-FREE.	4	Comprar
.1	43	C/C.22pF.50V.5%NPOSMD 040215A12201K-BJ0A.HF.LEAD- FREE.	3	Comprar
.1	44	C/C.220pF.50V.5%NPOSMD 040215A12211K-BJ0A.HF.LEAD-FREE.	2	Comprar
.1	45	C/C.33pF.50V.5%NPOSMD 040215A13301K-BJ0A.HF.LEAD-FREE.	2	Comprar
.1	46	C/C.330pF.50V.5%NPOSMD 0402HF.LEAD-FREE	1	Comprar
.1	47	C/C.100pF.50V.10%X7RSMD 040215A110150-K0.HF.LEAD- FREE.	7	Comprar
.1	48	C/C.0.01uF.25V.10%X7RSMD 040215A11031F-BK0L.HF.LEAD-FREE.	7	Comprar
.1	49	C/C.0.1uF.10V.10%X7RSMD 040215A110410-K0.HF.LEAD-FREE.	153	Comprar
.1	50	C/C.3300pF.50V.10%X7RSMD 040215A133250-K0.HF.LEAD- FREE.	1	Comprar
.1	51	C/C.470pF.50V.10%X7RSMD 040215A147150-K0.HF.LEAD-	3	Comprar

		EDEE		
		FREE.		
.1	52	C/C.0.047uF.16V.10%X7RSMD 040215A147325-K0.HF.LEAD-FREE.	1	Comprar
.1	53	C/C.5600pF.25V.10%X7RSMD 040215A15621H-BK0L.HF.LEAD-FREE	1	Comprar
.1	54	C/C.0.1uF.25V.10%X5RSMD 040215A110425-K1LEAD- FREE(RoHS/HF)	32	Comprar
.1	55	C/C.1uF.16V.10%X5RSMD 0402HF.LEAD-FREE	1	Comprar
.1	56	C/C.1uF.6.3V.10%X5RSMD 040215A110506-K1LEAD- FREE(RoHS/HF).	75	Comprar
.1	57	C/C.2.2uF.6.3V.20%X5RSMD 0402LEAD-FREE(RoHS/HF)	4	Comprar
.1	58	C/C.4.7uF.6.3V.20%X5RSMD 0402LEAD-FREE(RoHS/HF)	4	Comprar
.1	59	RES.10K.1/10W.5%SMD 060310A101033-15LEAD- FREE(RoHS/HF)	1	Comprar
.1	60	RES.22 OHM.1/10W.5%SMD 060310A102203-83LEAD- FREE(RoHS/HF)	1	Comprar
.1	61	RES.220 OHM.1/10W.5%SMD 0603.(10G102213-83)LEAD- FREE(RoHS/HF)	10	Comprar
.1	62	RES.4.7 OHM.1/10W.5%SMD 060310A104793-15LEAD- FREE(RoHS/HF)	1	Comprar
.1	63	RES.10K.1/16W.5%SMD 040210A101033-8CLEAD- FREE(RoHS/HF)	96	Comprar
.1	64	RES.1M.1/16W5%SMD 040210A100163-83LEAD- FREE(RoHS/HF)	2	Comprar
.1	65	RES.1 OHM.1/16W.5%SMD 040210A100103-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	66	RES.10 OHM.1/16W.1%SMD 040210A101001-8CLEAD- FREE(RoHS/HF)	6	Comprar
.1	67	RES.100 OHM.1/16W.1%SMD 040210A110001-8CLEAD- FREE(RoHS/HF)	4	Comprar
.1	68	RES.1K.1/16W.1%SMD 040210A101021-8CLEAD- FREE(RoHS/HF)	9	Comprar
.1	69	RES.100K.1/16W.1%SMD 040210A110031-8CLEAD-FREE(RoHS/HF)	16	Comprar
.1	70	RES.12K.1/16W.1%SMD 040210A101231-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	71	RES.12.1 OHM.1/16W.1%SMD 040210A112191-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	72	RES.1.24K.1/16W.1%SMD 040210A112491-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	73	RES.137K.1/16W.1%SMD 040210A113731-8CLEAD- FREE(RoHS/HF)	1	Comprar

.1	74	RES.14K.1/16W.1%SMD 040210A101431-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	75	RES.14.3K.1/16W.1%SMD 040210A114321-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	76	RES.150K.1/16W.5%SMD 040210A101543-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	77	RES.162 OHM.1/16W.1%SMD 040210A116201-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	78	RES.16.2K.1/16W.1%SMD 040210A116221-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	79	RES.1.69K.1/16W.1%SMD 040210A116911-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	80	RES.1.78K.1/16W.1%SMD 040210A117811-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	81	RES.18K.1/16W.5%SMD 040210A101833-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	82	RES.200K.1/16W.5%SMD 040210A102043-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	83	RES.20 OHM.1/16W.1%SMD 040210A102001-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	84	RES.200K.1/16W.1%SMD 040210A120031-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	85	RES.2.1K.1/16W.1%SMD 040210A102121-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	86	RES.2.2K.1/16W.5%SMD 040210A102223-1CLEAD- FREE(RoHS/HF)	23	Comprar
.1	87	RES.220K.1/16W.5%SMD 040210A102243-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	88	RES.2.2 OHM.1/16W.5%SMD 040210A102293-8CLEAD- FREE(RoHS/HF)	4	Comprar
.1	89	RES.22 OHM.1/16W.1%SMD 040210A102201-8CLEAD- FREE(RoHS/HF)	4	Comprar
.1	90	RES.2.49K.1/16W.1%SMD 040210A124911-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	91	RES.24.9K.1/16W.1%SMD 040210A124921-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	92	RES.28K.1/16W.1%SMD 040210A102831-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	93	RES.29.4 OHM.1/16W.1%SMD 0402LEAD-FREE(RoHS/HF)	1	Comprar
.1	94	RES.33K.1/16W.1%SMD 040210A103331-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	95	RES.39.2K.1/16W.1%SMD 040210A139221-8CLEAD- FREE(RoHS/HF)	1	Comprar

.1	96	RES.3.92 OHM.1/16W.1%SMD 0402LEAD-FREE(RoHS/HF)	2	Comprar
.1	97	RES.4.02K.1/16W.1%SMD 040210A140211-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	98	RES.402 OHM.1/16W.1%SMD 0402LEAD-FREE(RoHS/HF)	3	Comprar
.1	99	RES.42.2K.1/16W.1%SMD 040210A142221-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	100	RES.45.3 OHM.1/16W.1%SMD 040210A145391-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	101	RES.4.7K.1/16W.5%SMD 040210A104723-8CLEAD-FREE(RoHS/HF)	5	Comprar
.1	102	RES.49.9 OHM.1/16W.1%SMD 040210A149991-8CLEAD- FREE(RoHS/HF)	5	Comprar
.1	103	RES.4.99K.1/16W.1%SMD 040210A149911-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	104	RES.5.1K.1/16W.1%SMD 040210A105121-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	105	RES.5.11K.1/16W.1%SMD 040210A151111-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	106	RES.6.2K.1/16W.1%SMD 040210A106221-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	107	RES.634 OHM.1/16W.1%SMD 0402HF.LEAD-FREE	1	Comprar
.1	108	RES.649 OHM.1/16W.1%SMD 040210A164901-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	109	RES.68K.1/16W.5%SMD 040210A106833-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	110	RES.6.8K.1/16W.1%SMD 040210A106821-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	111	RES.71.5 OHM.1/16W.1%SMD 040210A171591-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	112	RES.75K.1/16W.1%SMD 040210A107531-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	113	RES.9.09K.1/16W.1%SMD 040210A190911-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	114	RES.93.1K.1/16W.1%SMD 040210A193121-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	115	THERMISTOR NTC.10K1%SMD 0603TH11-3H103FT17G410311	3	Comprar
.1	116	XTAL.32.768KHZ.20ppm.12.5pFSMD 4P.6.9*1.4*1.4mmSSP-T7- F25A32768B	1	Comprar
.1	117	XTAL.12MHZ20pFSMDXS32-4P25A120006-00.HF.LEAD- FREE.KTS	2	Comprar
.1	118	XTAL.25MHZ.30ppm.20pFSMD 4P.3.4*2.7*0.7mmXSX250-S32-20	2	Comprar

.1	119	INDUCTOR.2.2uH.20%.775mASMD.2.9*2.5*2.1mm.SWF2520CF-2R2M	1	Comprar
.1	120	POWER IND.1uH.20%.11A.10m OHMSMD.6.8*7.3*3mm.BCIHP0730-1R0M	2	Comprar
.1	121	TRANS.NS6924171000BASE-T.SMD 24PHF.LEAD-FREE.SWAP	1	Comprar
.1	122	CONN.FPC TOP12P 1R 90D SMDP0.5mmBEIGE.F0503WR-S- 12PNLNT1TT0R	4	Comprar
.1	123	CONN.FPC ZIF24P 1R 90D SMD.P1mm88746-2401LEAD-FREE(RoHS)	1	Comprar
.1	124	CONN.USB A-TYPE4P 90DH4.46mm30uBLACK.C107GF-10405-L	1	Comprar
.1	125	CONN.USB(3.0) A-TYPE9P 90D DIP30uBLUE(300C).53078- 0094D-011	1	Comprar
.1	126	CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L	1	Comprar
.1	127	HEADER.BH2*1 90D SMDP1.25mm88266-02001- 0632GG00255-00	1	Comprar
.1	128	HEADER.BH12*1 90D SMD.P1.0mm87213- 1200G32GD01206-00	1	Comprar
.1	129	HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L	1	Comprar
.1	130	HEADER.WAFER15*2 90D SMDP1.0mmWHITE.88107-30001- 0632GD03008	1	Comprar
.1	131	HEADER.BH4*1 90D SMDP1.25mmBLACK.50271-00401-001	2	Comprar
.1	132	SLOT.MINI PCI-E M.267P 2R 90D SMDP0.5mm H3mm.KEY B.2NF3001-000111F	1	Comprar
.1	133	SLOT.NGFF67P 2R 90D SMDP0.5mm H2mmKEY EBLACK.NASE0-S6701-TS2	1	Comprar
.1	134	SOCKET.MEMORY CARD 2 IN 1 SD/MMC11P 1R 90D SMDBLACK.8191-3511	1	Comprar
.1	135	SWITCH.TACT4P 180D SMD160gBLACK.TJE-533I-Q-T/R(12)	1	Comprar
.1	136	JACK MODULAR.LAN(RJ45)8P 90DBLACKW/SHIELD2RJ1691-000111F	1	Comprar
.1	137	JACK AUDIO5P 90D SMD.D3.6mmBLUE(285C)2SJ2342- 001121F	1	Comprar
.1	138	BATTERY.LI.3V35mAhBCR1220H4.5AAEKB.W/CABLEHF.LEAD-FREE.KTS	1	Comprar
.1	139	FB.60 OHM.25%SMD 0805.QT2012RL060HC-5A- LF.5A21AU20123-30.HF.LEAD	2	Comprar
.1	140	FB.300 OHM.25%SMD 0603.QT1608RL300HC2A- LF.2A21AU1608F	6	Comprar
.1	141	FB.60 OHM.25%SMD 0603.HCB1608KF-600T30.3A21AU16082- 00.HF.LEAD	5	Comprar

.1	142	FB.120 OHM.25%SMD 0402.FCM1005KF- 121T03.300mA21AU10050-40	3	Comprar
.1	143	FB.300 OHM.25%SMD 0402.FCM1005KF- 301T03.300mA21AU10054-00	1	Comprar
.1	144	FUSE SLOW.32V.3A.SMD 1206S1206-S-3.0AULHF.LEAD-FREE.SART	1	Comprar
.1	145	COMMON CHOKE.330 OHM.25%.SMD 0805CMF2012F-331-2P- T.300mA	1	Comprar
.1	146	COMMON CHOKE.90 OHM.20%.SMD 0805CMF2012H2-900-2P- T.400mA	6	Comprar
.2	147	Blísteres plásticos antiestáticos	1	Comprar

Tabla 68: Lista estructurada de materiales memoria RAM Fuente: Elaboración propia en base a datos de Grupo Núcleo

Nivel	Número de parte	Nombre de la parte	Cantidad por unidad	Fabricar o Comprar
0	1	Motherboard	1	Fabricar
.1	A1	Ensamble de la placa base y la pasta de soldar		Fabricar
2	2	Placa Base	1	Comprar
2	3	Pasta de soldar		Comprar
.1	4	IC EC.IT8528VG/FXVFBGA 128P3.3VHF.LEAD-FREE.ITE	1	Comprar
.1	5	IC LAN.RTL8105E-VL-CGQFN 48PHF.LEAD-FREE.REALTEK	1	Comprar
.1	6	IC CARD READER.RTS5170-GRQFN 24PLEAD-FREE(RoHS/HF).REALTEK	1	Comprar
.1	7	IC USB.GL850G-37QFN 28PLEAD-FREE(RoHS).GENESYS	2	Comprar
.1	8	IC SPI ROM.2M.W25X20CLSNIGSO 8P2.3-3.6VHF.LEAD-FREE.WINBOND	1	Comprar
.1	9	IC SPI ROM.64M.W25Q64FWSSIG-TSO 8P1.65-1.95V	1	Comprar
.1	10	IC TTL.74AHC1G08GWSOT-35307A741080-30LEAD-FREE(RoHS/HF).PHILIPS	4	Comprar
.1	11	IC CODEC.ALC283-CGMQFN 48PLEAD-FREE(RoHS/HF).REALTEK	1	Comprar
.1	12	IC CONV.RTD2132R-CGQFN 32P.3.3VLEAD-FREE.REALTEK	1	Comprar
.1	13	IC CONV.G5310QN1UQFN 28PHF.LEAD-FREE.GMI	2	Comprar
.1	14	IC SWITCH.G3202BTL1USOT-363HF.LEAD-FREE.GMT	1	Comprar
.1	15	IC SWITCH.APE8990GN3BDFN 14P.5.5V.6AHF.LEAD-	1	Comprar

		FREE.APEC		
.1	16	IC REG.APE8981MP-BESOP 8P3AHF.LEAD-FREE.APEC	1	Comprar
.1	17	IC REG.G2997F51UMSOP 8P(FD)HF.LEAD-FREE.GMT	1	Comprar
.1	18	IC SWITCH.AH180N-WG-7SC-59-303A180700-10.HF.LEAD-FREE.DIODES	1	Comprar
.1	19	IC REG.PS6200A1-3.0-T3LRSOT-23-3.3V.300mALEAD-FREE.LISION	1	Comprar
.1	20	IC SWITCH.G524B1T11USOT-23-5.2.5AHF.LEAD- FREE.GMT	4	Comprar
.1	21	IC REG.APU8836Y5-HFSOT23-5.ADJ.300mA08A883650- 10.HF.LEAD-FREE.APEC	3	Comprar
.1	22	IC AMPR.PS321G-T5LRSOT-23-5HF.LEAD-FREE.LISION	1	Comprar
.1	23	IC AMPR.G1331T11USOT-23-5LEAD-FREE.GMT	1	Comprar
.1	24	IC INVERTER.G5930RB1UTDFN 6PHF.LEAD-FREE.GMT	1	Comprar
.1	25	IC SENSOR.ADXL345BCCZ-RL7LGA 14P08A345110- 10.HF.LEAD-FREE.	1	Comprar
.1	26	IC PWM.OZ8296LN-(A2)QFN 32PLEAD- FREE(RoHS/HF).O2MICRO	1	Comprai
.1	27	IC CONV.G5330AQN1UQFN 28PHF.LEAD-FREE.GMI	1	Comprai
.1	28	IC CONV.G5332AQP1UQFN 21PHF.LEAD-FREE.GMI	1	Comprai
.1	29	IC PWM.ISL9520HRTZTQFN 28PHF.LEAD-FREE.INTERSIL	1	Comprai
.1	30	IC TPM.NPCT421IA1WXTSSOP 28P.3.3VHF.LEAD-FREE.NUVOTON	1	Comprai
.1	31	IC LEVEL SHIFTER.TXB0102DCURG4SOT-70LEAD-FREE.TI	1	Comprai
.1	32	IC TRANSLATOR.PCA9306DCURVSSOP 8PLEAD-FREE.TI	2	Comprai
.1	33	ZENER.BZT52-C5V1SGSOD-323LEAD- FREE(RoHS/HF).LISION	2	Comprai
.1	34	TVS.TVL040201AB15.5V6pFSMD 0402HF.LEAD- FREE.INPAQ	1	Comprai
.1	35	ESD PTOR.EGA10402V05AHSMD 040220A210402- 10LEAD-FREE	3	Comprai
.1	36	SCHOTTKY.BAT54SOT-2320G954002-20.HF.LEAD-FREE.DIODES	3	Compra
.1	37	SCHOTTKY.BAT54C30V.200mASOT-23-320G540001- 20LEAD-FREE.DIODES	2	Comprai
.1	38	SCHOTTKY.BAT54T30V.200mASOT-523HF.LEAD-FREE.LISION	1	Comprai
.1	39	DIODE.1SS355GSOD-323HF.LEAD-FREE.LISION	3	Compra
.1	40	DIODE.BAV70T85V.75mASOT-523HF.LEAD-FREE.LISION	2	Comprai

.1	41	MOSFET P-CH.PA002FMGVds=-20V,Vgs=12V.ld=-3A.Rds(on)=100m	1	Comprar
.1	42	MOSFET N-CH.ME2N7002E- GVds=60V,Vgs=20V.Id=300mA.Rds(on)=5 OHM	5	Comprar
.1	43	MOSFET P-CH.P5103EMGVds=-30V,Vgs=-20V.ld=-4.5A.Rds(on)	2	Comprar
.1	44	MOSFET N-CH.FMSBSS138- HVds=50V,Vgs=20V.Id=0.2A.Rds(on)	1	Comprar
.1	45	MOSFET P-CH.PA503EMGVds=-30V,Vgs=20V.Id=-2A.Rds(on)	2	Comprar
.1	46	MOSFET DUAL N-CH.ME2N7002F1KW- GVds=30V,Vgs=20V.Id=0.2A.Rds(on)	16	Comprar
.1	47	MOSFET P-CH.P2003EEAVds=-30V,Vgs=-25V.Id=-28A.Rds(on)	3	Comprar
.1	48	MOSFET N- CH.MDV1525URHVds=30V,Vgs=20V.Id=24A.Rds(on)	4	Comprar
.1	49	MOSFET N-CH.P2003BEADFN3*3.30V/10A20AA20031	2	Comprar
.1	50	MOSFET N- CH.SSM3K37MFVVds=20V,Vgs=10V.ld=250mA.Rds(on)	14	Comprar
.1	51	MOSFET P-CH.APSPP1071N-HFVds=-20V,Vgs=-12V.ld=- 0.45A.Rds(on)	1	Comprar
.1	52	TR PNP.MMBT2907ATG-5T3R60V.600mASOT-523HF.LEAD-FREE.LISION	1	Comprar
.1	53	LED.BLUE.LTST-C193TBKT-5A 5mA20A419300-00LEAD-FREE	5	Comprar
.1	54	LED.BLUE+RED.LTST-C195TBJRKT-ASMD 4P5mA20A419501-00LEAD-FREE	1	Comprar
.1	55	A/C POLYMER330uF.2V.10- 35%105CEEFSX0D331EY16A733120-M1.HF	2	Comprar
.1	56	T/C.100uF.6.3V.20%6TPE100MAZB.SMD B216A710706-M1	2	Comprar
.1	57	N/C.47uF.6.3V.20%NOJB476M006RWJV.SMD BLEAD- FREE(RoHS/HF).AVX	1	Comprar
.1	58	C/C.10uF.25V.10%X5RSMD 120615A110625-K2LEAD- FREE(RoHS/HF)	14	Comprar
.1	59	C/C.22uF.16V.10%X5RSMD 1206LEAD-FREE(RoHS/HF)	3	Comprar
.1	60	C/C.22uF.6.3V.20%X5RSMD 080515A122606-M2LEAD- FREE(RoHS/HF).	23	Comprar
.1	61	C/C.0.22uF.25V.10%X7RSMD 060315A622425-K0.HF.LEAD-FREE.	3	Comprar
.1	62	C/C.0.033uF.25V.10%X7RSMD 060315A13331H- EK0L.HF.LEAD-FREE	1	Comprar
.1	63	C/C.0.047uF.25V.10%X7RSMD 060315A14731H- EK0L.HF.LEAD-FREE.	1	Comprar

.1	64	C/C.1uF.25V.10%X5RSMD 060315AC41058-60LEAD-FREE(RoHS/HF).	7	Comprar
.1	65	C/C.10uF.6.3V.20%X5RSMD 060315A110606-M4LEAD-FREE(RoHS/HF).	48	Comprar
.1	66	C/C.2.2uF.6.3V.10%X5RSMD 060315A122506-K0LEAD-FREE(RoHS/HF).	7	Comprar
.1	67	C/C.22uF.6.3V.20%X5RSMD 0603LEAD-FREE(RoHS/HF)	3	Comprar
.1	68	C/C.4.7uF.6.3V.10%X5RSMD 060315A147506-K0LEAD-FREE(RoHS/HF).	16	Comprar
.1	69	C/C.1000pF.2KV.10%X7RSMD 180815AC21021- 90.HF.LEAD-FREE.	1	Comprar
.1	70	C/C.10pF.25V.5%NPOSMD 040215A11001H-B0CALEAD- FREE(RoHS/HF).	1	Comprar
.1	71	C/C.100pF.50V.5%NPOSMD 040215AC11015-10.HF.LEAD- FREE.	3	Comprar
.1	72	C/C.18pF.50V.5%NPOSMD 040215A11801K- BJ0A.HF.LEAD-FREE.	4	Comprar
.1	73	C/C.20pF.50V.5%NPOSMD 040215A120050-J0.HF.LEAD- FREE.	4	Comprar
.1	74	C/C.22pF.50V.5%NPOSMD 040215A12201K- BJ0A.HF.LEAD-FREE.	3	Comprar
.1	75	C/C.220pF.50V.5%NPOSMD 040215A12211K- BJ0A.HF.LEAD-FREE.	2	Comprar
.1	76	C/C.27pF.50V.5%NPOSMD 040215A12701K- BCCA.HF.LEAD-FREE.	2	Comprar
.1	77	C/C.33pF.50V.5%NPOSMD 040215A13301K- BJ0A.HF.LEAD-FREE.	2	Comprar
.1	78	C/C.330pF.50V.5%NPOSMD 0402HF.LEAD-FREE	1	Comprar
.1	79	C/C.100pF.50V.10%X7RSMD 040215A110150-K0.HF.LEAD-FREE.	7	Comprar
.1	80	C/C.1000pF.25V.10%X7RSMD 040215A110225- M0.HF.LEAD-FREE.	1	Comprar
.1	81	C/C.1000pF.50V.10%X7R.(15A11051K-B0CL)SMD 0402HF.LEAD-FREE.	23	Comprar
.1	82	C/C.0.01uF.25V.10%X7RSMD 040215A11031F- BK0L.HF.LEAD-FREE.	7	Comprar
.1	83	C/C.0.01uF.50V.10%X7RSMD 040215A101850-K0.HF.LEAD-FREE.	2	Comprar
.1	84	C/C.0.1uF.10V.10%X7RSMD 040215A110410-K0.HF.LEAD-FREE.	153	Comprar
.1	85	C/C.2200pF.50V.10%X7RSMD 040215A122250- K0.HF.LEAD-FREE.	11	Comprar

		KO LIE LEAD EDEE		
		K0.HF.LEAD-FREE.		
.1	87	C/C.470pF.50V.10%X7RSMD 040215A147150-K0.HF.LEAD-FREE.	3	Comprar
.1	88	C/C.4700pF.50V.10%X7RSMD 040215A14721H-BK0L.HF.LEAD-FREE.	3	Comprar
.1	89	C/C.0.047uF.16V.10%X7RSMD 040215A147325- K0.HF.LEAD-FREE.	1	Comprar
.1	90	C/C.5600pF.25V.10%X7RSMD 040215A15621H- BK0L.HF.LEAD-FREE	1	Comprar
.1	91	C/C.680pF.50V.10%X7RSMD 040215A16811H- BK0L.HF.LEAD-FREE.	2	Comprar
.1	92	C/C.0.1uF.25V.10%X5RSMD 040215A110425-K1LEAD- FREE(RoHS/HF)	32	Comprar
.1	93	C/C.1uF.16V.10%X5RSMD 0402HF.LEAD-FREE	1	Comprar
.1	94	C/C.1uF.6.3V.10%X5RSMD 040215A110506-K1LEAD-FREE(RoHS/HF).	75	Comprar
.1	95	C/C.2.2uF.6.3V.20%X5RSMD 0402LEAD- FREE(RoHS/HF)	4	Comprar
.1	96	C/C.4.7uF.6.3V.20%X5RSMD 0402LEAD- FREE(RoHS/HF)	4	Comprar
.1	97	RES.0 OHM.1/8W.5%SMD 080510A100003-26.HF.LEAD-FREE	1	Comprar
.1	98	RES.0 OHM.1/10W.5%SMD 060310A100003-15LEAD-FREE(RoHS/HF)	19	Comprar
.1	99	RES.10 OHM.1/10W.5%SMD 060310A101001-15LEAD-FREE(RoHS/HF)	2	Comprar
.1	100	RES.10K.1/10W.5%SMD 060310A101033-15LEAD- FREE(RoHS/HF)	1	Comprar
.1	101	RES.22 OHM.1/10W.5%SMD 060310A102203-83LEAD- FREE(RoHS/HF)	1	Comprar
.1	102	RES.220 OHM.1/10W.5%SMD 0603.(10G102213-83)LEAD-FREE(RoHS/HF)	10	Comprar
.1	103	RES.4.7 OHM.1/10W.5%SMD 060310A104793-15LEAD-FREE(RoHS/HF)	1	Comprar
.1	104	RES.0 OHM.1/16W.5%SMD 040210A100003-8CLEAD-FREE(RoHS/HF)	111	Comprar
.1	105	RES.1K.1/16W.5%SMD 040210A100133-8C0LEAD-FREE(RoHS/HF)	18	Comprar
.1	106	RES.10K.1/16W.5%SMD 040210A101033-8CLEAD-FREE(RoHS/HF)	96	Comprar
.1	107	RES.100K.1/16W.5%SMD 040210A110033-8CLEAD-FREE(RoHS/HF)	27	Comprar
.1	108	RES.1M.1/16W5%SMD 040210A100163-83LEAD-	2	Comprar

		FREE(RoHS/HF)		
.1	109	RES.10M.1/16W.5%SMD 040210A101063-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	110	RES.1 OHM.1/16W.5%SMD 040210A100103-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	111	RES.10 OHM.1/16W.1%SMD 040210A101001-8CLEAD-FREE(RoHS/HF)	6	Comprar
.1	112	RES.100 OHM.1/16W.1%SMD 040210A110001-8CLEAD-FREE(RoHS/HF)	4	Comprar
.1	113	RES.1K.1/16W.1%SMD 040210A101021-8CLEAD- FREE(RoHS/HF)	9	Comprar
.1	114	RES.10K.1/16W.1%SMD 040210A110021-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	115	RES.100K.1/16W.1%SMD 040210A110031-8CLEAD- FREE(RoHS/HF)	16	Comprar
.1	116	RES.12K.1/16W.1%SMD 040210A101231-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	117	RES.12.1 OHM.1/16W.1%SMD 040210A112191-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	118	RES.1.24K.1/16W.1%SMD 040210A112491-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	119	RES.127K.1/16W.1%SMD 040210A112731-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	120	RES.137K.1/16W.1%SMD 040210A113731-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	121	RES.14K.1/16W.1%SMD 040210A101431-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	122	RES.140K.1/16W.1%SMD 040210A114031-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	123	RES.14.3K.1/16W.1%SMD 040210A114321-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	124	RES.15K.1/16W.5%SMD 040210A101533-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	125	RES.150K.1/16W.5%SMD 040210A101543-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	126	RES.1.5K.1/16W.1%SMD 040210A101521-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	127	RES.162 OHM.1/16W.1%SMD 040210A116201-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	128	RES.16.2K.1/16W.1%SMD 040210A116221-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	129	RES.162K.1/16W.1%SMD 040210A116231-8CLEAD-FREE(RoHS/HF)	3	Comprar

.1	130	RES.16.5K.1/16W.1%SMD 040210A116521-8CLEAD-FREE(RoHS/HF)	3	Comprar
.1	131	RES.16.9 OHM.1/16W.1%SMD 040210A116991-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	132	RES.1.69K.1/16W.1%SMD 040210A116911-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	133	RES.1.78K.1/16W.1%SMD 040210A117811-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	134	RES.18K.1/16W.5%SMD 040210A101833-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	135	RES.200K.1/16W.5%SMD 040210A102043-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	136	RES.20 OHM.1/16W.1%SMD 040210A102001-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	137	RES.20K.1/16W.1%SMD 040210A102031-8CLEAD- FREE(RoHS/HF)	8	Comprar
.1	138	RES.200K.1/16W.1%SMD 040210A120031-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	139	RES.2.1K.1/16W.1%SMD 040210A102121-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	140	RES.2.2K.1/16W.5%SMD 040210A102223-1CLEAD- FREE(RoHS/HF)	23	Comprar
.1	141	RES.220K.1/16W.5%SMD 040210A102243-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	142	RES.2.2 OHM.1/16W.5%SMD 040210A102293-8CLEAD- FREE(RoHS/HF)	4	Comprar
.1	143	RES.22 OHM.1/16W.1%SMD 040210A102201-8CLEAD-FREE(RoHS/HF)	4	Comprar
.1	144	RES.2.2K.1/16W.1%SMD 040210A102221-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	145	RES.23.2 OHM.1/16W.1%SMD 0402LEAD- FREE(RoHS/HF)	1	Comprar
.1	146	RES.2.49K.1/16W.1%SMD 040210A124911-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	147	RES.24.9K.1/16W.1%SMD 040210A124921-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	148	RES.249K OHM.1/16W.1%SMD 040210A124931-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	149	RES.26.1K.1/16W.1%SMD 040210A126123-8CLEAD-FREE(RoHS/HF)	3	Comprar
.1	150	RES.28K.1/16W.1%SMD 040210A102831-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	151	RES.287K.1/16W.1%SMD 040210A128731-8CLEAD-FREE(RoHS/HF)	1	Comprar

.1	152	RES.29.4 OHM.1/16W.1%SMD 0402LEAD- FREE(RoHS/HF)	1	Comprar
.1	153	RES.3K.1/16W.1%SMD 040210A100331-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	154	RES.31.6K.1/16W.1%SMD 040210A131621-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	155	RES.33 OHM.1/16W.5%SMD 040210A103303-8CLEAD-FREE(RoHS/HF)	11	Comprar
.1	156	RES.33K.1/16W.1%SMD 040210A103331-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	157	RES.39.2K.1/16W.1%SMD 040210A139221-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	158	RES.3.92 OHM.1/16W.1%SMD 0402LEAD- FREE(RoHS/HF)	2	Comprar
.1	159	RES.4.02K.1/16W.1%SMD 040210A140211-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	160	RES.402 OHM.1/16W.1%SMD 0402LEAD-FREE(RoHS/HF)	3	Comprar
.1	161	RES.42.2K.1/16W.1%SMD 040210A142221-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	162	RES.44.2K.1/16W.1%SMD 040210A144221-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	163	RES.45.3 OHM.1/16W.1%SMD 040210A145391-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	164	RES.46.4K.1/16W.1%SMD 040210A146421-8CLEAD- FREE(RoHS/HF)	2	Comprar
.1	165	RES.470 OHM.1/16W.5%SMD 040210A147003-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	166	RES.4.7K.1/16W.5%SMD 040210A104723-8CLEAD-FREE(RoHS/HF)	5	Comprar
.1	167	RES.47K.1/16W.5%SMD 040210A104733-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	168	RES.4.7 OHM.1/16W.5%SMD 040210A104793-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	169	RES.4.7K.1/16W.1%SMD 040210A104721-8CLEAD-FREE(RoHS/HF)	7	Comprar
.1	170	RES.47.5 OHM.1/16W.1%SMD 040210A147591-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	171	RES.49.9 OHM.1/16W.1%SMD 040210A149991-8CLEAD-FREE(RoHS/HF)	5	Comprar
.1	172	RES.4.99K.1/16W.1%SMD 040210A149911-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	173	RES.51 OHM.1/16W.5%SMD 040210A105103-8CLEAD-FREE(RoHS/HF)	5	Comprar

.1	174	RES.51 OHM.1/16W.1%SMD 040210A105101-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	175	RES.5.1K.1/16W.1%SMD 040210A105121-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	176	RES.5.11K.1/16W.1%SMD 040210A151111-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	177	RES.51.1K.1/16W.1%SMD 040210A151121-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	178	RES.56K.1/16W.5%SMD 040210A105633-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	179	RES.619 OHM.1/16W.1%SMD 040210A161901-8CLEAD-FREE(RoHS/HF)	8	Comprar
.1	180	RES.6.2K.1/16W.1%SMD 040210A106221-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	181	RES.634 OHM.1/16W.1%SMD 0402HF.LEAD-FREE	1	Comprar
.1	182	RES.649 OHM.1/16W.1%SMD 040210A164901-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	183	RES.68K.1/16W.5%SMD 040210A106833-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	184	RES.6.8K.1/16W.1%SMD 040210A106821-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	185	RES.71.5 OHM.1/16W.1%SMD 040210A171591-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	186	RES.7.15K.1/16W.1%SMD 040210A171511-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	187	RES.73.2 OHM.1/16W.1%SMD 0402LEAD- FREE(RoHS/HF)	4	Comprar
.1	188	RES.75 OHM.1/16W.1%SMD 040210A107501-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	189	RES.75 OHM.1/16W.1%SMD 040210A107501-8CLEAD-FREE(RoHS/HF)	2	Comprar
.1	190	RES.75K.1/16W.1%SMD 040210A107531-8CLEAD- FREE(RoHS/HF)	1	Comprar
.1	191	RES.86.6K.1/16W.1%SMD 040210A188621-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	192	RES.88.7K.1/16W.1%SMD 040210A188721-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	193	RES.9.09K.1/16W.1%SMD 040210A190911-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	194	RES.93.1K.1/16W.1%SMD 040210A193121-8CLEAD-FREE(RoHS/HF)	1	Comprar
.1	195	RES SENSE.0.02 OHM.1W.1%SMD 120610A100281- 5C.HF.LEAD-FREE.PDC.	2	Comprar

.1 196 RES SENSE.0.025 OHM.1W.1%SMD 1206.FMF10A102571- 57.HF 2 Comprar .1 197 THERMISTOR NTC.10K1%SMD 0603TH11- 31 OAD2ERT.J0GV1474J17A414743-BC 2 Comprar .1 198 THERMISTOR NTC.470K5%SMD 0402ERT.J0GV2474J17A414743-BC 2 Comprar .1 199 XTAL.32.768KHZ.20ppm.12.5pFSMD 4P.6.9*1.4*1.4mmSSP- 17FREE.KTS 1 Comprar .1 200 XTAL.12MHZ20pFSMDXS32-4P25A120006-00.HF.LEAD- FREE.KTS 2 Comprar .1 201 XTAL.2EMHZ.30ppm.20pFSMD 4P.3.4*2.7*0.7mmXSX250- S32-20 2 Comprar .1 202 INDUCTOR 2.2uH.20%.775mASMD 2.9*2.5*2.1mm.SWF2520 1 Comprar .1 203 INDUCTOR 4.7uHSWF2520CF-4R7M-A1121AW25206 1 Comprar .1 204 POWER IND 1.0H.20%.11A.10m OHMSMD 6.6*56.9*3.0mm.PCMC063T- 2R2MN 3 Comprar .1 205 POWER IND 2.2uH.20%.14ASMD 6.5*6.9*3.0mm.PCMC063T- 3R3MN 1 Comprar .1 206 POWER IND 3.7% 6.6*2.8mm.TMPC0603H 1 Comprar .1 207					
1	.1	196		2	Comprar
198 0402_ERTJ0EV474J17A414743-8C 2 Comprar	.1	197		3	Comprar
.1 199 T7-F 1 Comprar .1 200 FREE.KTS 2 Comprar .1 201 XTAL.12MHZ20pFSMDXS32-4P25A120006-00.HF.LEAD- FREE.KTS 2 Comprar .1 201 XTAL.25MHZ.30ppm.20pFSMD 4P.3.4'2.7'0.7mmXSX250- S32-20 2 Comprar .1 202 INDUCTOR.2.2uH.20%.775mASMD.2.9'2.5'2.1mm.SWF2520 1 Comprar .1 203 INDUCTOR.4.7uHSWF2520CF-4R7M-A1121AW25206 1 Comprar .1 204 POWER IND.1uH.20%.11A.10m OHMSMD.6.8'7.3'smm.BCIHP0730-1R0M 2 Comprar .1 205 POWER IND.2.2uH.20%.14ASMD.6.5'6.9'3.0mm.PCMC063T- 2R2MN 3 Comprar .1 206 POWER IND.4.7uH.20%.5.5A.40m OHMSMD.7.3'6.6'2.8mm.TMPC0603H 1 Comprar .1 207 POWER IND.4.7uH.20%.5.5A.40m OHMSMD.7.3'6.6'2.8mm.TMPC0603H 1 Comprar .1 208 TRANS.NS6924171000BASE-T.SMD 24PHF.LEAD- FREE.SWAP 1 Comprar .1 209 CONN.FPC ZIF TOP32P 1R 90D SMDP0.5mmBEIGE.F0503WR-S 4	.1	198		2	Comprar
.1 201 STAL 25MHZ.30ppm.20pFSMD 4P.3.4*2.7*0.7mmXSX250- S32-20 2 Comprar .1 201 XTAL 25MHZ.30ppm.20pFSMD 4P.3.4*2.7*0.7mmXSX250- S32-20 2 Comprar .1 202 INDUCTOR.2.2uH.20%.775mASMD.2.9*2.5*2.1mm.SWF2520 1 Comprar .1 203 INDUCTOR.4.7uHSWF2520CF-4R7M-A1121AW25206 1 Comprar .1 204 POWER IND.1uH.20%.11A.10m OHMSMD.6.9*7.3*3mm.BCIHP0730-1R0M 2 Comprar .1 205 POWER IND.2.2uH.20%.14ASMD.6.5*6.9*3.0mm.PCMC063T- 2R2MN 3 Comprar .1 206 POWER IND.3.3uH.20%.6ASMD.6.5*6.9*3.0mm.PCMC063T- 3R3MN 1 Comprar .1 207 POWER IND.4.7uH.20%.5.5A.40m OHMSMD.7.3*6.6*2.8mm.TMPC0603H 1 Comprar .1 207 POWER IND.4.7uH.20%.5.5A.40m OHMSMD.7.3*6.6*2.8mm.TMPC0603H 1 Comprar .1 208 TRANS.NS6924171000BASE-T.SMD 24PHF.LEAD- FREE.SWAP 1 Comprar .1 209 CONN.FPC TOP12P 1R 90D SMDP0.5mmm.BEIGE.F0503WR-S 4 Comprar .1 210	.1	199		1	Comprar
1 201 S32-20 Comprair	.1	200		2	Comprar
1 202 CF-2R2M	.1	201		2	Comprar
.1 204 POWER IND.1uH.20%.11A.10m OHMSMD.6.8*7.3*3mm.BCIHP0730-1R0M 2 Comprar .1 205 POWER IND.2.2uH.20%.14ASMD.6.5*6.9*3.0mm.PCMC063T-2R2MN 3 Comprar .1 206 POWER IND.3.3uH.20%.6ASMD.6.5*6.9*3.0mm.PCMC063T-3R3MN 1 Comprar .1 207 POWER IND.4.7uH.20%.5.5A.40m OHMSMD.7.3*6.6*2.8mm.TMPC0603H 1 Comprar .1 208 TRANS.NS6924171000BASE-T.SMD 24PHF.LEAD-FREE.SWAP 1 Comprar .1 209 CONN.FPC TOP12P 1R 90D SMD.P0.5mm88746-2401LEAD-FREE 1 Comprar .1 210 CONN.FPC ZIF.24P 1R 90D SMD.P1mm88746-2401LEAD-FREE 1 Comprar .1 211 CONN.FPC ZIF.24P 1R 90D SMD.P1mm88746-32PN 2 Comprar .1 212 CONN.USB A-TYPE4P 90D SMD.P1.04D 1 Comprar .1 212 CONN.USB A-TYPE9P 90D DIPBACK.C107GF-10405 1 Comprar .1 213 CONN.USB (3.0) A-TYPE9P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 214 CONN.HDMI A-TYPE19P 90D D	.1	202		1	Comprar
.1 204 OHMSMD.6.8*7.3*3mm.BCIHP0730-1R0M 2 Comprar .1 205 POWER IND.2.2uH.20%.14ASMD.6.5*6.9*3.0mm.PCMC063T-2R2MN 3 Comprar .1 206 POWER IND.3.3uH.20%.6ASMD.6.5*6.9*3.0mm.PCMC063T-3R3MN 1 Comprar .1 207 POWER IND.4.7uH.20%.5.5A.40m OHMSMD.7.3*6.6*2.8mm.TMPC0603H 1 Comprar .1 208 TRANS.NS6924171000BASE-T.SMD 24PHF.LEAD-FREE.SWAP 1 Comprar .1 209 CONN.FPC TOP12P 1R 90D SMD.P1mm88746-2401LEAD-FREE 1 Comprar .1 210 CONN.FPC ZIF. 24P 1R 90D SMD.P1mm88746-2401LEAD-FREE 1 Comprar .1 211 CONN.FPC ZIF TOP32P 1R 90D SMD.P1mm88746-32PN 2 Comprar .1 212 CONN.USB A-TYPE.4P 90D SMD.P0.5mm.BEIGE.F0503WR-S-32PN 2 Comprar .1 212 CONN.USB A-TYPE.4P 90D SMD.P1.9005 1 Comprar .1 213 CONN.USB(3.0) A-TYPE9P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11	.1	203	INDUCTOR.4.7uHSWF2520CF-4R7M-A1121AW25206	1	Comprar
1.1 205 2R2MN 3 Comprain 1.1 206 POWER IND.3.3uH.20%.6ASMD.6.5*6.9*3.0mm.PCMC063T-3R3MN 1 Comprain 1.1 207 POWER IND.4.7uH.20%.5.5A.40m OHMSMD.7.3*6.6*2.8mm.TMPC0603H 1 Comprain 1.1 208 TRANS.NS6924171000BASE-T.SMD 24PHF.LEAD-FREE.SWAP 1 Comprain 1.1 209 CONN.FPC TOP12P 1R 90D SMD.P1.2P 1R.90D SMD.P0.5mmBEIGE.F0503WR-S 4 Comprain 1.1 210 CONN.FPC ZIF24P 1R 90D SMD.P1.2P 1R.80D SMDP0.5mm.BEIGE.F0503WR-S-32PN 2 Comprain 1.1 211 CONN.FPC ZIF.TOP32P 1R 90D SMDP1.2P 1R.90D	.1	204		2	Comprar
.1 206 3R3MN 1 Comprar .1 207 POWER IND.4.7uH.20%.5.5A.40m OHMSMD.7.3*6.6*2.8mm.TMPC0603H 1 Comprar .1 208 TRANS.NS6924171000BASE-T.SMD 24PHF.LEAD- FREE.SWAP 1 Comprar .1 209 CONN.FPC TOP12P 1R 90D SMDP0.5mmBEIGE.F0503WR-S 4 Comprar .1 210 CONN.FPC ZIF.24P 1R 90D SMD.P1mm88746- 2401LEAD-FREE 1 Comprar .1 211 CONN.FPC ZIF TOP32P 1R 90D SMDP0.5mm.BEIGE.F0503WR-S-32PN 2 Comprar .1 212 CONN.USB A-TYPE4P 90DH4.46mm30uBLACK.C107GF-10405 1 Comprar .1 213 CONN.USB (3.0) A-TYPE9P 90D DIP30uBLUE(300C).53078-0094D-011 1 Comprar .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 215 HEADER.BH2*1 90D SMDP1.25mm8266-02001- 0632G000255-00 1 Comprar .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213- 1200G32GD01206 1 Comprar .1 217 HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprar <td>.1</td> <td>205</td> <td></td> <td>3</td> <td>Comprar</td>	.1	205		3	Comprar
.1 207 OHMSMD.7.3*6.6*2.8mm.TMPC0603H 1 Comprar .1 208 TRANS.NS6924171000BASE-T.SMD 24PHF.LEAD-FREE.SWAP 1 Comprar .1 209 CONN.FPC TOP12P 1R 90D SMD.P1mm88746-SMD.P0.5mmBEIGE.F0503WR-S 4 Comprar .1 210 CONN.FPC ZIF24P 1R 90D SMD.P1mm88746-SMD.P0.5mm.BEIGE.F0503WR-S-32PN 2 Comprar .1 211 CONN.FPC ZIF TOP32P 1R 90D SMD.P0.5mm.BEIGE.F0503WR-S-32PN 2 Comprar .1 212 CONN.USB A-TYPE4P 90D SMD.P0.H4.46mm30uBLACK.C107GF-10405 1 Comprar .1 213 CONN.USB(3.0) A-TYPE9P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 215 HEADER.BH2*1 90D SMD.P1.25mm88266-02001-0632GG00255-00 1 Comprar .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213-1200G32GD01206 1 Comprar .1 217 HEADER.WAFER-2GAP4*19.DOM	.1	206		1	Comprar
.1 208 FREE.SWAP 1 Comprar .1 209 CONN.FPC TOP12P 1R 90D SMD.P1R 90D SMD.P1mm88746- SMDP0.5mmBEIGE.F0503WR-S 4 Comprar .1 210 CONN.FPC ZIF.24P 1R 90D SMD.P1mm88746- SMDP0.5mm.BEIGE.F0503WR-S-32PN 2 Comprar .1 211 CONN.FPC ZIF TOP32P 1R 90D SMDP0.5mm.BEIGE.F0503WR-S-32PN 2 Comprar .1 212 CONN.USB A-TYPE4P 90DBLACK.C107GF-10405 1 Comprar .1 213 CONN.USB(3.0) A-TYPE9P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 215 HEADER.BH2*1 90D SMDP1.25mm88266-02001- 0632GG00255-00 1 Comprar .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213- 1200G32GD01206 1 Comprar .1 217 HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprar	.1	207		1	Comprar
.1 209 SMDP0.5mmBEIGE.F0503WR-S 4 Comprar .1 210 CONN.FPC ZIF24P 1R 90D SMD.P1mm88746- 2401LEAD-FREE 1 Comprar .1 211 CONN.FPC ZIF TOP32P 1R 90D SMDP0.5mm.BEIGE.F0503WR-S-32PN 2 Comprar .1 212 CONN.USB A-TYPE4P 90DH4.46mm30uBLACK.C107GF-10405 1 Comprar .1 213 CONN.USB(3.0) A-TYPE9P 90D DIP30uBLUE(300C).53078-0094D-011 1 Comprar .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 215 HEADER.BH2*1 90D SMDP1.25mm88266-02001- 0632GG00255-00 1 Comprar .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213- 1200G32GD01206 1 Comprar .1 217 HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprar	.1	208		1	Comprar
.1 210 2401LEAD-FREE 1 Comprai .1 211 CONN.FPC ZIF TOP32P 1R 90D SMDP0.5mm.BEIGE.F0503WR-S-32PN 2 Comprain .1 212 CONN.USB A-TYPE4P 90DH4.46mm30uBLACK.C107GF-10405 1 Comprain .1 213 CONN.USB(3.0) A-TYPE9P 90D DIPBLACK.C12897-11908-1 1 Comprain .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-1 1 Comprain .1 215 HEADER.BH2*1 90D SMDP1.25mm88266-02001-0632GG00255-00 1 Comprain .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213-1200G32GD01206 1 Comprain .1 217 HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprain	.1	209		4	Comprar
.1 211 SMDP0.5mm.BEIGE.F0503WR-S-32PN 2 Comprar .1 212 CONN.USB A-TYPE4P 90DH4.46mm30uBLACK.C107GF-10405 1 Comprar .1 213 CONN.USB(3.0) A-TYPE9P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 215 HEADER.BH2*1 90D SMDP1.25mm88266-02001- 0632GG00255-00 1 Comprar .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213- 1200G32GD01206 1 Comprar .1 217 HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprar	.1	210		1	Comprar
.1 212 90DH4.46mm30uBLACK.C107GF-10405 1 Comprar .1 213 CONN.USB(3.0) A-TYPE9P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L 1 Comprar .1 215 HEADER.BH2*1 90D SMDP1.25mm88266-02001- 0632GG00255-00 1 Comprar .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213- 1200G32GD01206 1 Comprar .1 217 HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprar	.1	211		2	Comprar
.1 213 DIP30uBLUE(300C).53078-0094D-011 1 Comprain .1 214 CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L 1 Comprain .1 215 HEADER.BH2*1 90D SMDP1.25mm88266-02001-0632GG00255-00 1 Comprain .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213-1200G32GD01206 1 Comprain .1 217 HEADER.WAFER-2GAP4*1-190D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprain	.1	212		1	Comprar
.1 215 HEADER.BH2*1 90D SMDP1.25mm88266-020011 216 HEADER.BH12*1 90D SMD.P1.0mm872131 217 HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprar	.1	213		1	Comprar
.1 215 0632GG00255-00 1 Comprar .1 216 HEADER.BH12*1 90D SMD.P1.0mm87213-	.1	214	CONN.HDMI A-TYPE19P 90D DIPBLACK.C12897-11908-L	1	Comprar
.1 216 1200G32GD01206 1 Comprar .1 217 HEADER.WAFER-2GAP4*1 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprar	.1	215		1	Comprar
.1 217 90D.P2mm46BEIGE.A2001WR-04PR4NT1NY5L 1 Comprar	.1	216		1	Comprar
1 218 HEADED WASED 45to 00D OND D4 0 1 Comprar	.1	217		1	Comprar
HEADER.WAFER15"2 90D SMDP1.0mmWHITE.88107-	.1	218	HEADER.WAFER15*2 90D SMDP1.0mmWHITE.88107-	1	Comprar

		30001-06		
.1	219	HEADER.BH4*1 90D SMDP1.25mmBLACK.50271-00401- 001LEAD-FREE	2	Comprar
.1	220	SLOT.MINI PCI-E M.267P 2R 90D SMDP0.5mm H3mmKEY B2NF300	1	Comprar
.1	221	SLOT.NGFF67P 2R 90D SMDP0.5mm H2mmKEY EBLACK.NASE0-S6701	1	Comprar
.1	222	SOCKET.MEMORY CARD 2 IN 1 SD/MMC11P 1R 90D SMDBLACK.8191-3511	1	Comprar
.1	223	SOCKET.S.O DIMM DDR3204P 2R 90D SMD.P0.6mm H5.2mm	1	Comprar
.1	224	SWITCH.TACT4P 180D SMD160gBLACK.TJE-533I-Q-T/R(12)	1	Comprar
.1	225	JACK MODULAR.LAN(RJ45)8P 90DBLACKW/SHIELD2RJ1691-000111F	1	Comprar
.1	226	JACK AUDIO5P 90D SMD.D3.6mmBLUE(285C)2SJ2342-001121F	1	Comprar
.1	227	BATTERY.LI.3V35mAhBCR1220H4.5AAEKB.W/CABLEHF.L EAD-FREE.KTS	1	Comprar
.1	228	FB.60 OHM.25%SMD 0805.QT2012RL060HC-5A- LF.5A21AU20123	2	Comprar
.1	229	FB.120 OHM.25%SMD 0603.FCM1608KF- 121T06.600mA21AU16080	2	Comprar
.1	230	FB.300 OHM.25%SMD 0603.QT1608RL300HC2A- LF.2A21AU1608F	6	Comprar
.1	231	FB.60 OHM.25%SMD 0603.HCB1608KF- 600T30.3A21AU16082	5	Comprar
.1	232	FB.60 OHM.25%SMD 0603.QT1608RL060HC070- LF.700mA21AU60498	4	Comprar
.1	233	FB.120 OHM.25%SMD 0402.FCM1005KF- 121T03.300mA21AU10050	3	Comprar
.1	234	FB.30 OHM.25%SMD 0402.FCM1005KF- 300T03.300mA21AU01005	1	Comprar
.1	235	FB.300 OHM.25%SMD 0402.FCM1005KF- 301T03.300mA21AU10054-00	1	Comprar
.1	236	POLYSWITCH.6V.1.1A.SMD 1206MF-NSMF110- 2UL/CSA/TUV28A400110	1	Comprar
.1	237	FUSE SLOW.32V.3A.SMD 1206S1206-S-3.0AULHF.LEAD-FREE.SART	1	Comprar
.1	238	COMMON CHOKE.330 OHM.25%.SMD 0805CMF2012F-331-2P-T.300mA	1	Comprar
.1	239	COMMON CHOKE.90 OHM.25%.SMD 0805MCM2012B900GBE21AV20129	3	Comprar
	240	COMMON CHOKE.90 OHM.20%.SMD 0805CMF2012H2-900-	6	Comprar

		2P-T.400mA		
.1	241	SHEET.MYLARDDR M/BEF10MI2LEAD-FREE.GG	1	Comprar
.1	242	SHEET.MYLAR+AL FOILM/B12	1	Comprar
.2	243	Bolsa antiestática	1	Comprar

Tabla 69: Lista estructurada de materiales *Motherboard* Fuente: Elaboración propia en base a datos de Grupo Núcleo

ANEXO III – Hora Hombre por Producto

	Producción al	Producción por	Horas por
Horas de producción [hs/mes]	192		
Operarios/Día de trabajo	1		
Horas/día de trabajo	8		
Días/mes de trabajo	24		
Tiempos de producción			

Producto	Producción al 100% [u/mes]	Producción por hora [u/hs]	Horas por unidad [hs/u]
Memoria RAM	40000	208	0,005
Motherboard	6000	31	0,032

Tabla 70: Tiempos de producción Fuente: Elaboración propia

ANEXO IV - Cotización seguro

PEDERACION PATRONAL SEGUROS S.A.

Tel: (0221)429-0300 - Fex: (0231)429-0229 Avda 11 nrc. 770/789 - LA FLATA(1900) http://www.fedpat.com.ar

Cotización

Fecha: 21/04/2015

Sin variación

55397560

Seccion: SEGURO TECNICO

Producto: EQUIPOS ELECTRONICOS

Vigencia: 21/04/2015 Hasta: 21/04/2016 366 Dias Productor: 1387 - MONTICELLI EDUARDO DANIEL

Solicitante: NN Posicion I.V.A: INSCRIPTO

Dirección: Localidad: 900 - CAPITAL PEDERAL

M.de Pago: EPECTIVO Moneda: PESOS

EQUIPO 1 CLASE DE EQUIPO ELECTRONICO Procesamiento de datos IDENTIFICACION DEL EQUIPO ELEC 1 Equipos de Computacion DISPOSICION DEL EQUIPO Fijo VARIACION FRANQUICIA

99

PLAN: 1 - PLAN BASICO

COBERTURAS Cantidad Valor Riesgo cubierto TODO RIESGO 10,044,000.00 10,044,000.00 51988.97 COMPONENTES: Descripción IVA 12186.32 23320.74 IVA ADICIONAL 1740.90 IMPUESTOS 9393.52 75309.71 PREMIO: VIDA MODULAR: 120.00 TOTAL PREMIO: 75429.71 OPCIONES DE PAGO:

10 cuotas de \$ 7542.97

La presente cotización incluye la "Percepción de Ingresos Brutos PBA", según lo establecido por el Art. 344 de la Disposición Normativa Serie B Nº 1/04 (texto según Disposición Normativa Serie B Nº 074/2007 y Resolución Normativa ARBA Nº101/2008). La alícuota aplicada corresponda a la consignada en el padrón de contribuyentes publicado por la Autoridad de Aplicación, vigente en el mes de emisión de la cotización para la CUIT informada, correspondiente al amegurado; si la misma no se encuentra en el padrón citado, se ha aplicado una alícuota del 69. Si la emisión de la póliza se realiza en un mes distinto al de la presente cotización, la misma podrá sufrir modificaciones si la Autoridad de Aplicación modifica la alícuota aplicable a la CUIT del asegurado.

SELP

Sujeto a inspección según circ.69-2008.Riesgos relac.con petróleo, gas, similares, embarcaciones, muelles, trab. subterráneos, acuáticos, solicitar cotización. Para Eq. móviles debe poseer otro seguro vigente.

SECCIÓN 6 139

ANEXO V - Fondo Nacional para el Desarrollo y Fortalecimiento de las MiPyMEs (FONDyF)

CARACTERÍSTICAS DEL PRÉSTAMO

El programa brinda asistencia financiera a aquellas MiPyMEs, con un mínimo de dos años de antigüedad, cuyos proyectos tengan como finalidad ampliar la capacidad instalada; la modernización tecnológica a través de la incorporación de equipo de producción, automatización y/o robotización; la mejora de los productos/servicios actuales en características objetivas, como ser la calidad, la prestaciones u otros atributos; la creación de nuevas líneas de productos/servicios y la innovación en los procesos generadores de valor. (Ministerio de Industria, 2015)

LÍNEAS DE FINANCIAMIENTO:

Inversiones en Bienes de Capital o Infraestructura

- Monto a financiar: desde \$ 1.000.000 a \$ 5.000.000 (Financia hasta el 80% del proyecto)
- Interés tasa: 14 % nominal anual, fija en pesos
- Plazo: 36 a 60 meses
- Periodo de gracia: 6 a 12 meses sobre la amortización de capital
- Sistema de amortización: Francés

Capital de Trabajo

- Monto a financiar: desde \$ 1.000.000 a \$ 2.000.000 (Financia el 100% del proyecto)
- Interés tasa: 18 % nominal anual, fija en pesos
- Plazo: 18 meses
- Sistema de amortización: Francés

REQUISITOS

- PyMEs con un mínimo de dos años de antigüedad
- Empresas pertenecientes a los siguientes sectores:
 - Manufactureras y transformadoras de productos industriales.

o Prestadoras de servicios industriales.

- o Agroindustriales.
- o Sector construcción.
- Mineras.
- o Software.
- o Productoras de contenidos audiovisuales.
- Empresas que califiquen como MIPyMES según la Resolució Nº 24/2001 y su modificatoria Nº 50/2013:
 - Sectores y ventas totales anuales (neto de IVA) contemplados en la convocatoria:

Industria y Minería: \$183.000.000

Servicios Industriales: \$63.000.000

Construcción: \$84.000.000

- Empresas que posean un Patrimonio Neto superior a los \$ 650.000
 Patrimonio Neto necesario para poder acceder al monto mínimo del préstamo a solicitar de \$ 1.000.000.
- Proyectos de Inversión asociados a la generación de valor agregado Para la Línea de Inversión Productiva pueden presentar Proyectos de inversión, además de los sectores de actividades permitidos, empresas comerciales o actividades primarias, o de servicios vinculadas únicamente a un proyecto fabril generación de valor agregado.