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Resumen

El acero ha desempeñado un papel fundamental en el avance de la sociedad

moderna. Su importancia es evidente en el aumento exponencial de la demanda

y producción presenciado en las últimas décadas. La excelente combinación

de propiedades, como alta resistencia, ductilidad, tenacidad y resistencia a la

corrosión, junto con un precio relativamente bajo, hace que el acero sea adecuado

para una amplia gama de aplicaciones en varios sectores.

La demanda de aceros de alta calidad ha llevado a cient́ıficos e inge-

nieros a desarrollar nuevas rutas de procesamiento con el fin de mejorar sus

propiedades. Estas nuevas rutas de procesamiento tienden a formar microestruc-

turas más finas y complejas.

Los aceros de alta calidad suelen estar compuestos por una mezcla com-

pleja de varios microconstituyentes, incluyendo ferrita, bainita, martensita y

eventualmente austenita retenida [1, 2]. La presencia de múltiples fases de difer-

entes tamaños permite la producción de aceros con propiedades espećıficas para

cada aplicación. Para garantizar el control de calidad y facilitar el desarrollo

de materiales con propiedades deseadas, es crucial caracterizar objetivamente

estas fases.

El análisis y la caracterización microestructural representan una parte

esencial del desarrollo de materiales y el control de calidad. Debido a la creciente

complejidad de las microestructuras, los métodos tradicionales de análisis y

caracterización a menudo no producen resultados satisfactorios. Los enfoques

basados en imágenes de microscopio óptico (LOM, por sus siglas en inglés) son

cada vez menos eficaces, especialmente para el análisis cuantitativo de materiales

con microestructuras más finas y un mayor número de microconstituyentes [1, 3,

4]. Además, la caracterización de estos aceros complejos por parte de expertos
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es altamente subjetiva y puede depender de su experiencia y expectativas[4, 5,

6].

La microscoṕıa correlativa es una técnica poderosa que permite la car-

acterización objetiva y reproducible de muestras mediante el uso de diferentes

métodos de contraste en una ubicación espećıfica de la muestra [3, 5]. El proceso

de alinear imágenes en el mismo sistema de coordenadas se denomina registro de

imágenes. Al combinar información de diferentes fuentes f́ısicas, la microscoṕıa

correlativa proporciona una comprensión más profunda de la microestructura

de la muestra.

Un enfoque interdisciplinario que utiliza machine learning (ML) propor-

ciona una forma adicional de reducir el grado de subjetividad en la caracter-

ización microestructural [5]. Los algoritmos de ML pueden analizar grandes

conjuntos de datos para identificar patrones y relaciones que pueden no ser

fácilmente apreciables para un observador humano, mejorando aśı la objetivi-

dad y reproducibilidad del análisis. La aplicación de herramientas modernas

de informática, incluido el ML, en la ciencia de materiales es una tendencia

creciente. La combinación de microscoṕıa correlativa y ML representa un área

prometedora de investigación para avanzar en la comprensión y el desarrollo de

materiales.

El objetivo principal de esta tesis es diseñar y entrenar modelos de ma-

chine learning para la clasificación objetiva de las fases de acero bainita y

martensita. Para ello se utilizó un enfoque correlativo basado en imágenes de

microscopio óptico (LOM), microscopio electrónico de barrido (SEM) y mapas

de Electron Backscatter Diffraction (EBSD).

Se utilizaron dos grupos de probetas con composiciones distintas. Las

composiciones se detallan en la tabla 3.1. Cada grupo de probetas consistió en

cinco muestras enfriadas a diferentes velocidades, lo que resultó en microestruc-

turas diferentes. Las velocidades de enfriamiento de cada probeta se encuen-

tran en las tablas 3.2 y 3.3. Estas probetas se montaron en un material apto

para el análisis en SEM, se desbastaron y pulieron hasta 1 µm. Los pasos

de preparación metalográfica se explican en la tabla 3.4. Luego, se seleccionó

cuidadosamente una Región de Interés (ROI) para cada muestra y se delimitó

mediante indentaciones de una máquina de ensayos de dureza. Finalmente,

se adquirieron imágenes utilizando LOM y SEM. Además, se obtuvieron ma-

pas EBSD para cada muestra, lo que proporcionó información valiosa sobre la
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orientación cristalográfica.

Luego de obtener las imágenes, se registraron utilizando el programa de

código abierto Fiji [7]. Para ello, se seleccionaron manualmente puntos distin-

tivos en cada micrograf́ıa y se correlacionaron entre śı. Una vez seleccionados

estos puntos, se realizó el registro utilizando el complemento bUnwarpJ [8].

En primer lugar, se registraron las imágenes LOM al mapa de Image Qual-

ity (IQ) de EBSD, lo cual permitió también superponer el resto de los mapas

de EBSD, como el Confidence Index (CI), el Kernel Average Misorientation 1

(KAM1), el Kernel Average Misorientation 3 (KAM3), el Grain Orientation

Spread (GOS) y el Grain Average Misorientation (GAM). Posteriormente, se

registraron las imágenes SEM a las LOM, logrando aśı una superposición de

todas las imágenes. A partir de esta superposición, se creó manualmente una

máscara de bordes de grano de austenita previa [9], que permitió extraer objetos

individuales de bainita y martensita de cada micrograf́ıa.

Se desarrollaron scripts e interfaces gráficas de usuario (GUI) en Python

para la adquisición y manipulación eficiente de conjuntos de datos. Estas GUI

permiten la extracción rápida de objetos de los diferentes métodos. También

se incorporaron caracteŕısticas adicionales para que el software fuera adecuado

tanto para la creación de conjuntos de datos como para el entrenamiento y la

aplicación de modelos de forma local.

Se entrenaron múltiples modelos demachine learning para ambos conjun-

tos de muestras. Los objetos utilizados para entrenar los modelos son matrices

de una cierta altura y anchura, que contienen los seis parámetros de EBSD: IQ,

CI, KAM1, KAM3, GOS y GAM. El proceso de selección del modelo y la op-

timización de hiperparámetros involucró una comprensión integral de diversas

técnicas de machine learning.

Inicialmente, se entrenaron modelos de Random Forest (RF) y Support

Vector Machine (SVM) debido a su facilidad de implementación utilizando los

módulos de Python disponibles. Si bien estos métodos no están espećıficamente

diseñados para esta tarea, proporcionaron una opción práctica para una imple-

mentación rápida y eficiente. La precisión de cada modelo se encuentra en la

tabla 4.1. Los modelos mostraron una precisión satisfactoria, aunque no ex-

cepcionalmente alta. Cabe destacar que su rendimiento puede disminuir para

tareas más complejas, como la clasificación de múltiples clases.

Posteriormente, se realizó una búsqueda para identificar una arquitec-
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tura de red neuronal convolucional (CNN) que pudiera resolver eficazmente

la tarea en cuestión. A través de experimentos y ajustes de varias arquitec-

turas e hiperparámetros, se determinó una configuración que mostró resultados

prometedores. Esta arquitectura se utilizó para ambos conjuntos de muestras,

variando solo la forma de entrada de los objetos. La precisión de cada modelo

se encuentra en la tabla 4.1. Los modelos lograron una precisión y reproducibil-

idad notablemente altas. Aunque estos modelos ya se pueden utilizar para la

clasificación objetiva y reproducible de bainita y martensita, cabe mencionar

que se pueden realizar mejoras adicionales, como incorporar un conjunto de

datos más amplio o realizar una selección de caracteŕısticas que podŕıa mejorar

el rendimiento.

Además, esta arquitectura demuestra un potencial prometedor para abor-

dar tareas más complejas de mayor relevancia en aplicaciones cient́ıficas e indus-

triales. En particular, en la clasificación de múltiples fases de acero, incluyendo

diferentes tipos de ferrita, bainita, martensita y perlita, lo cual se explorará en

investigaciones futuras.

En resumen, este proyecto logró caracterizar de manera efectiva y ob-

jetiva las microestructuras de dos grupos de muestras con distintas composi-

ciones. Se utilizó un enfoque correlativo que combinó imágenes de LOM y SEM

con mapas de EBSD, lo que permitió una comprensión más profunda de la mi-

croestructura. Se desarrollaron scripts y GUIs en Python para la adquisición y

manipulación eficiente de los datos. Se entrenaron modelos de machine learning,

incluyendo RF, SVM y CNN, y se logró una alta precisión en la clasificación de

bainita y martensita. Este trabajo sienta las bases para futuras investigaciones

en la clasificación de múltiples fases de acero y tiene aplicaciones potenciales en

diversos campos cient́ıficos e industriales.
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Abstract

This thesis focuses on the design and training of machine learning models to

successfully separate bainitic and martensitic objects in steel microstructures.

The study involves the investigation and characterization of two groups of steel

samples with distinct compositions, each comprising five samples subjected to

varying cooling rates.

The objective of this research is to develop an objective and reproducible

method for characterizing bainite and martensite microstructures. To achieve

this, an interdisciplinary approach combining modern microscopy techniques

with machine learning is adopted. Correlative microscopy is utilized to gain a

deeper and more objective understanding of the microstructure, as well as to

establish ground truths. This approach involves acquiring images from Light

Optical Microscopy (LOM), Scanning Electron Microscopy (SEM), and Electron

Backscatter Diffraction (EBSD) maps.

Computer vision and machine learning tools are employed to create mod-

els for the classification of bainite and martensite objects. Random Forest (RF),

Support Vector Machines (SVM), and Convolutional Neural Networks (CNN)

models are trained using numerical arrays of the EBSD data associated with

each object.

By combining advanced microscopy techniques with artificial intelligence,

this thesis aims to provide a reliable approach for the objective and reproducible

characterization of bainite and martensite in steel microstructures. The perfor-

mance and effectiveness of the developed models will be evaluated, providing

insights into the potential application of similar techniques in materials science

and industrial applications.
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Chapter 1

Introduction

Steel has played a critical role in the advancement of modern society. Its sig-

nificance is evident in the exponential increase in demand and production wit-

nessed in recent decades. The excellent combination of properties such as high

strength, ductility, toughness and corrosion resistance, together with a relatively

low price, makes steel suitable for a wide range of applications in various sectors.

The demand for high quality steels has been the driving force for sci-

entists and engineers to develop new processing routes. In trying to improve

the properties of steel, these new processing routes tend to form finer and more

complex microstructures.

High-quality steels are typically composed of a complex mixture of sev-

eral microconstituents, including ferrite, bainite, martensite, and possibly re-

tained austenite [1, 2]. The presence of multiple phases of different sizes allows

for the production of steels with tailored properties to meet specific applica-

tion requirements. To ensure quality control and facilitate the development of

materials with desired properties, it is crucial to objectively characterize these

phases.

Microstructural analysis and characterization represents an essential part

of material development and quality control. Due to the growing complexity of

microstructures, traditional analysis and characterization methods often fail to

produce satisfactory results. Approaches that rely on light-optical microscope

(LOM) images are becoming less useful, especially for the quantitative analy-
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sis of materials with increasingly fine microstructures and a larger number of

micro-constituents [1, 3, 4]. Furthermore, the characterization of these complex

steels by experts is highly subjective and can depend on their experience and

expectations [4, 5, 6].

Correlative microscopy is a powerful technique that allows for objec-

tive and reproducible characterization of samples by using different contrasting

methods at a specific sample location [3, 5], which are then combined with

each other. The process of aligning image-like data to the same coordinate

system is referred to as image registration. By combining information from dif-

ferent sources, correlative microscopy provides a deeper understanding of the

microstructure of the sample.

An interdisciplinary approach using machine learning provides an addi-

tional way to reduce the degree of subjectivity in microstructural characteriza-

tion [5]. Machine learning algorithms can analyze large sets of data to identify

patterns and relationships that may not be readily apparent to a human ob-

server, thus enhancing the objectivity and reproducibility of the analysis. The

application of modern computer science tools, including machine learning, in

materials science is a growing trend [5]. The combination of correlative mi-

croscopy and machine learning represents a promising area of research for ad-

vancing the understanding and development of materials.

The primary objective of this thesis is to design and train machine learn-

ing models that are capable of accurately classifying bainite and martensite

objects in a reproducible and objective manner. To achieve this goal, a correl-

ative approach will be employed, combining data from light optical microscopy

(LOM), scanning electron microscopy (SEM), and electron backscatter diffrac-

tion (EBSD). A mask of the prior austenite grain boundaries will be created to

obtain objects. Two different machine learning models, Support Vector Machine

and Random Forest, will be trained for this purpose. In addition, a Convolu-

tional Neural Network will be designed and trained to classify the objects. The

performance of these three models will be evaluated and compared to iden-

tify the most suitable one for accurate and reliable classification of bainite and

martensite objects.

11



Chapter 2

Theoretical foundations

2.1 Fundamentals of Materials Science

2.1.1 Steel

Alloys that contain iron and carbon are collectively referred to as steel, and they

can be combined with various alloying elements that have a significant impact

on the final material properties, even in small percentages. However, the carbon

content of the alloy is the most significant factor affecting its properties. Alloys

with up to 2% carbon are classified as steel, while alloys with carbon content

exceeding 2% are classified as cast iron.

The properties of steel can vary widely depending not only on its chemical

composition but also on the processing route and thermomechanical treatments

it undergoes. These processes take advantage of the solid state transformations

that occur in steel to generate different microstructures with different properties

[10]. Microstructure refers to the arrangement of atoms and grains within a

material and is determined by its composition and processing history. The

microstructure of steel stores information about the processing it has undergone

and plays a crucial role in determining its mechanical, physical, and chemical

properties. Therefore, understanding the microstructure of steel is crucial in

designing materials with specific properties for different applications.

As the demand for high-quality steels continues to grow, their microstruc-
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ture has become increasingly complex and refined, posing a significant challenge

for its characterization, which is crucial for materials development and qual-

ity control. Classical methods, such as light optical microscopy (LOM), are

approaching their technical limits for characterizing these fine structures [4].

Additionally, the increasing complexity makes it more difficult for experts to

classify it objectively, leading to a growing need for objective and automated

characterization methods.

2.1.2 Phases of steel

Iron exhibits allotropy, which refers to the ability of a chemical element to have a

stable existence in more than one crystal form. The stable state of an element or

compound is determined by the lowest molar Gibbs free energy at the pressure

and temperature of interest [11]. At room temperature and pressure, the most

stable form of iron is α-iron or ferrite, which possesses a body-centered cubic

(bcc) crystal structure. However, at higher temperatures, ferrite undergoes a

solid-state transition and transforms into γ-iron or austenite, which has a face-

centered cubic (fcc) crystal structure. At even higher temperature, austenite

transition back to body-centered cubic structure called δ -iron. Furthermore, at

very high pressures, α - iron changes into a hexagonal close-packed (hcp) struc-

ture, known as ϵ -iron. However, the latter two structures have little significance

in technical applications.

There are two major groups of solid-state transformations: reconstructive

and displacive. In reconstructive transformations, all bonds are broken, and the

atoms are rearranged into a new pattern, which means that they occur with the

diffusion of atoms [10]. Displacive transformations, on the other hand, maintain

all bonds but deform the structure, for example, through shear, to form a new

crystal structure. Displacive transformations are diffusionless [10].

Carbon is a crucial element in the formation and constitution of steel

phases. The carbon content and its maximum solubility in the iron lattice sig-

nificantly influence the final phases of steel. Carbon atoms are smaller than iron

atoms, which enables them to enter the α-iron and γ-iron lattices as interstitial

solute atoms. However, as the atomic size of carbon is larger than the size of

available interstices, it creates distortions in the lattice that result in a strain

energy. The resulting strain field impedes the mobility of dislocations, thereby
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increasing the steel’s strength [10]. This strengthening mechanism is called solid

solution strengthening and occurs with various alloying elements.

The solubility of carbon in ferrite and austenite is determined by their

crystal structures. Ferrite has a bcc structure with six tetrahedral holes and

three octahedral holes, with radii relative to iron of 0.29 r and 0.15 r, respec-

tively [10]. Although the tetrahedral holes are larger, it has been observed that

carbon occupies the octahedral holes. This is because in the case of tetrahedral

interstices, carbon would displace four nearest-neighbor iron atoms, requiring

more strain energy than the two nearest-neighbor displacements produced in

the octahedral interstices [10]. The fcc structure of austenite, although more

closely packed, has larger holes than the bcc structure, which makes the solu-

bility of carbon in austenite in equilibrium with ferrite greater. This structure

has two tetrahedral interstices and one octahedral interstice, with radii relative

to iron of 0.23 r and 0.41 r, respectively [10]. If the carbon content exceeds

the solubility limit of the solid solution, the carbon is precipitated as an iron

carbide (Fe3C) called cementite. This compound has an orthorhombic crystal

structure and a carbon solubility of 6.67%. Due to its crystalline structure and

chemical composition, cementite is harder and more brittle compared to the

solid solution.
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Figure 2.1: (a) Bcc structure of ferrite showing an octahedral interstice on the

left and a tetrahedral interstice on the right; (b) Fcc structure of austenite

showing an octahedral interstice on the left and a tetrahedral interstice on the

right. [10]

The Fe-C equilibrium diagram in Figure 2.2 summarizes the prevailing

phases at each temperature and as a function of carbon content. It is important

to distinguish between stable and metastable systems. Graphite is the stable

phase with the lowest free energy, but its formation requires very high diffu-

sion times. In most technical application, cementite forms instead, which is a

metastable phase.
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Figure 2.2: Iron - Carbon diagram. [12]

The difference in carbon solubility between austenite and ferrite is re-

flected in the much larger phase field of austenite. At 1147 °C, when in equilib-

rium with liquid and cementite (point E in Figure 2.2), the maximum solubility

of carbon in austenite is about 2 wt%. On the other hand, the α-iron phase field

is severely limited, with a maximum carbon solubility of only 0.02 wt% at 727

°C when ferrite is in equilibrium with austenite or cementite (point P in Figure

2.2) [10]. This significant difference in solubility is crucial for heat treatments

that aim to produce supersaturated solid solutions by rapidly cooling from the

austenitic field.

Figure 2.2 shows the eutectoid point at which the Fe-C system undergoes

a solid-state transformation from austenite to ferrite and cementite. During the

eutectoid transition, one solid phase converts into two solid phases, typically

exhibiting a lamellar structure. In the Fe-C system, the eutectoid point is

located at 727 °C and 0.76 wt% carbon, which is the lowest temperature at

which austenite is stable. The transformation occurs via a reconstructive solid-

state reaction that involves the successive nucleation and growth of ferrite and
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cementite lamellae. Nucleation occurs at austenite grain boundaries or other

high-energy zones with a local depletion of carbon, resulting in the formation

of low-carbon ferrite. This leaves an adjacent zone with a high carbon content

where cementite nucleation and growth are favored. The resulting structure is

called a pearlite colony, which consists of an interpenetrating bicrystal of ferrite

and cementite. In planar sections, the phases appear as a lamellar structure [10].

The thickness of each lamella depends on the cooling rate, as the transformation

relies on the diffusion of iron and carbon atoms. Higher cooling rates hinder

diffusion and therefore, thinner lamellae are formed.

The microstructure at the eutectoid point exhibits a purely pearlitic

character. At lower carbon concentration, the austenite transforms into fer-

rite, with the austenite becoming enriched in carbon until it reaches the eu-

tectoid concentration, at which point pearlite is formed. This microstructure

is called hypoeutectoid and is characterized by the presence of ferrite grains

and pearlite colonies. In contrast, when the carbon concentration exceeds 0.76

wt%, cementite forms first, reducing the carbon content in the austenite until it

reaches the eutectoid composition and transforms into pearlite. This results in

a microstructure known as hypereutectoid, which contains cementite grains and

pearlite colonies. The samples used in this work have low and medium carbon

content of around 0.088 wt% and 0.219 wt%, respectively, and thus exhibit a

hypoeutectoid composition.

The microstructures discussed so far arise under moderately low cooling

rates that favor reconstructive transformations. However, the final phases of

steels are strongly dependent on the cooling rates. The actual microstructures

obtained are metastable and often differ from those predicted by the equilibrium

phase diagram. When the cooling rate is high, only displacive transformations

are possible, and many different phases can be formed depending on this pa-

rameter.

Steel can exhibit various phases, including different types of ferrite, bai-

nite, pearlite, and martensite, depending on its composition and cooling rate.

However, it is crucial to acknowledge the existence of multiple classification

schemes, which frequently contradict one another and lack clarity. Taking these

challenges into consideration, this work will simplify the analysis by placing a

primary emphasis on martensite and bainite, as the main focus is on the me-

thodical classification based on EBSD data.
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The time-temperature-transformation (TTT) diagram illustrates the fi-

nal phases that form based on the cooling rate. A general example of a TTT

diagram can be seen in Figure 2.3. The formation mechanisms and characteris-

tics of bainite and martensite will be explained in detail in the following sections

as they are relevant to the current work.

Figure 2.3: Schematic illustration of a TTT diagram [13].

2.1.3 Martensite

Martensite is a hard and brittle phase that forms in steel when austenite is

rapidly quenched to room temperature. This process involves such high cooling

rates that the diffusion of atoms becomes negligible. Unlike ferrite or pearlite,

which form through diffusional mechanisms, martensite forms through a de-

formation of the austenite lattice without any diffusion of atoms, i.e., through

a displacive mechanism. The fcc structure of austenite is transformed into a

super carbon-saturated bcc structure. The plates of martensite can grow at
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speeds that approach the speed of sound in the material, reaching up to 1100

m/s, whereas the maximum velocity measured for a reconstructive transforma-

tion is only 80 m/s [10]. Furthermore, the final composition of martensite is

the same as that of the parent austenite, which further demonstrates that this

transformation is indeed diffusionless [10].

The interface between austenite and martensite is known as the habit

plane. When the transformation is unconstrained, this interface plane is typi-

cally flat. However, when the transformation is constrained by its surroundings,

such as in a polycrystalline material, strain energy minimization can introduce

some curvature to the interface [10]. To achieve rapid growth at low temper-

atures, this interface must be glissile, meaning it can move with the glide of

dislocations [14].

Since the formation of martensite involves the coordinated movement of

atoms, the lattice orientation of martensite and austenite are closely related.

This coordinated motion of atoms also implies that the transformation cannot

be sustained across austenite grain boundaries [15].

The rearrangement of atoms during the formation of martensite leads to

a macroscopic change in the crystal’s shape, resulting in a large shear component

(≈ 0.22) and a small dilatational strain (≈ 0.03) normal to the habit plane [10,

14]. This strain required to transform the fcc structure to the bcc structure

is known as the Bain strain. It involves a compression along the z-axis of the

austenite crystal and uniform expansion along the x and y axes.

The Bain strain predicts a rational orientation relationship between the

parent and product lattices, which contradicts the observed irrational orienta-

tion relationships. Additionally, it does not leave any line invariant, which vi-

olates the essential condition for a glissile interface. However, the combination

of the Bain strain and a rigid body rotation satisfies these conditions, enabling

accurate prediction of the irrational orientation relationship. These orientation

relationships can be utilized to reconstruct the parent grains [16]. The combina-

tion of these two transformations, however, only yields an invariant-line strain

and not the observed invariant-plane strain that occurs during the transforma-

tion of austenite to martensite. The phenomenological theory of martensite

crystallography solves this problem by adding a second homogeneous shear to

the Bain strain. However, this second shear leads to the wrong shape deforma-

tion. To correct this, an inhomogeneous lattice-invariant deformation, such as
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slip or twinning, must cancel out the macroscopic shape-changing effect of the

second shear, as illustrated in Figure 2.4 [10, 14].

Figure 2.4: Summary of the phenomenological theory of martensite crystallog-

raphy [14].

Figure 2.5 depicts the free energy of ferrite and austenite as a function of

carbon concentration at a given temperature T1. The equilibrium composition

at this temperature is obtained by drawing a tangent line to the minimum of

both curves, representing a transformation where carbon diffusion is possible.

At a certain point, ferrite and austenite have the same carbon composition and

free energy. Collecting this information for different temperatures gives the T0

curve, indicating the threshold where the martensitic transformation is thermo-

dynamically possible or not. For lower carbon concentrations, a transformation

from austenite to ferrite without altering composition leads to a decrease in free

energy, while for higher concentrations, this transformation causes an increase

in free energy, making it thermodynamically infeasible.
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Julián Vega

Mat.: 13.826

Figure 2.5: Schematic illustration of the origin of the T0 curve on the phase

diagram.[17].

The α+ strain curve takes into account the energy associated with the

deformation energy resulting from the transformation. By including additional

energy terms, such as those associated with twin interfaces or α/γ interfaces,

the Ms temperature, which marks the onset of the transformation, can be de-

termined.

The martensitic transformation is considered an athermal process, mean-

ing that the volume fraction of martensite does not increase with time when held

at a temperature below Ms. Instead, the transformation rate is primarily de-

termined by the degree of undercooling below the martensite start temperature

[10]. This is because nuclei that are easier to form are triggered at small un-

dercooling, while progressively more difficult-to-form nuclei are triggered as the
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undercooling increases [10]. There is no martensite-finish temperature, since

the martensite volume fraction tends to 1 when the temperature tends to 0, but

for convenience, Mf is defined at the point where 95% of the transformation is

completed. This also implies that there is always a certain amount of austen-

ite that remains untransformed at room temperature, which is called retained

austenite [10].

The carbon concentration is a critical factor influencing the characteris-

tics and properties of martensite. Firstly, the morphology and crystallography of

martensite are highly sensitive to carbon content. At low carbon concentrations,

martensite exhibits a lath or plate-like morphology with low-misorientation

boundaries between each lath. However, at higher carbon concentrations, the

plates of martensite become more lenticular, and the habit planes change at

around 0.5 wt% [10]. Secondly, the tetragonality of the bcc lattice increases

with carbon content, leading to a transformation to a body-centered tetragonal

lattice (bct) at high concentrations. This distortion produces an asymmetrical

strain field with a high shear component that strongly interacts with disloca-

tions, hindering their mobility and increasing hardness. Thirdly, Ms decreases

with carbon concentration, implying that the amount of retained austenite also

increases with carbon content. Finally, the carbon concentration is perhaps the

most crucial strengthening factor in martensite because it increases the tetrag-

onality of the lattice. Additionally, the subdivision of austenite into either laths

or lenticles creates low-angle sub-boundaries that impede the mobility of dislo-

cations, thereby contributing to an increase in hardness [10].

2.1.4 Bainite

The definition and formation mechanism of bainite have been subjects of contro-

versy since its inception [18]. The general microstructural definition describes

bainite as a nonlamellar eutectoid decomposition product [19, 20]. However,

three conflicting definitions exist, making it impossible for all of them to be

simultaneously true. The two primary theories regarding the formation mecha-

nism contradict each other, as one proposes a diffusion-controlled transformation

while the other favors a displacive, diffusionless transformation [18].

In recent years, the theory of diffusionless, displacive transformation

has gained increasing scientific evidence and demonstrated superior predictive
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power. In fact, only this theory has been applied to alloy design [18]. There-

fore, this theory will be adopted and explained in this work as the preferred

approach.

Bainite and martensite are both phases with a bcc lattice that result

from the decomposition of austenite through a displacive transformation. Both

phases cause an invariant-plane strain deformation. In bainite, the shear com-

ponent is approximately 0.26 and the dilatation strain normal to the habit plane

is approximately 0.03 [13]. As in martensite, there is a synchronized movement

of atoms that confines the transformation within the austenite grain. However,

bainite forms at a temperature that is above the Ms temperature but below

that at which fine pearlite forms, allowing for some mobility of carbon atoms.

Bainite formation begins with the heterogeneous nucleation of carbon

supersaturated ferrite in a plate-like shape at austenite grain boundaries. This

nucleation process is diffusionless. However, the transformation temperature

for bainite is higher than that of martensite, allowing carbon atoms to partition

into the residual austenite, leading to the subsequent nucleation of carbides.

Depending on the temperature, these carbides can precipitate in two forms,

giving rise to two types of bainite.

At higher temperatures, typically between 400°C and 500°C, carbon mo-

bility is high enough for it to precipitate in the adjacent austenite, forming Upper

Bainite (UB). Conversely, when the transformation occurs between 250°C and

400°C, there is not enough time for all the carbon to diffuse to the austenite.

As a result, some carbides precipitate within the plates in the form of finely

divided cementite. However, there is also some precipitation of cementite from

carbon-enriched austenite outside the plates. This type of bainite is known as

Lower Bainite (LB). Figure 2.6 represents the precipitation of these carbides in

both types of bainite
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Figure 2.6: Schematic representation of the precipitation of carbides in Upper

and Lower bainite [17].

The precipitation of coarse cementite particles between plates in UB can

lead to a reduction in toughness compared to LB. Moreover, LB exhibits a

slightly finer microstructure and thinner inter-plate carbides compared to UB,

which results in higher strength and toughness at the same time.

Both upper and lower bainite consist of clusters of ferrite plates sepa-

rated by cementite, and occasionally by untransformed austenite or martensite.

These clusters, called sheaves, are made up of multiple sub-units that are inter-

connected in three dimensions and share a common crystallographic orientation.

The sub-units within a sheaf have uniform dimensions because they grow until

they reach a limiting size. The majority of new sub-units form near the tips of

existing sub-units rather than along their sides, as shown in Figure 2.7 [13].

The sub-units in upper bainite are typically about 10 µm in length and

0.2 µm in thickness, while those in lower bainite are slightly smaller. Due to

the limited resolution of optical microscopes, individual bainite plates cannot

be resolved as their size is smaller than the wavelength of visible light, which
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is around 0.5 µm [13, 21]. Nonetheless, an ensemble of these plates can be

observed.

It is this microstructure that gives bainite its high strength due to its

ultrafine grain size. The width of the plates determines the mean free slip

distance of the dislocations, making the effective grain size less than one mi-

crometer. This is significant because grain refinement is the only method that

can increase both hardness and toughness simultaneously. This phenomenon,

in which strength increases as grain size decreases, is known as the Hall-Petch

effect and is widely used to increase the strength of steel.

Figure 2.7: Schematic illustration of the evolution of the structure of sheaves in

bainite over time [10].

Since bainite forms at higher temperatures than martensite, the parent

austenite is weaker and unable to elastically accommodate large shape defor-

mations. Instead, it undergoes plastic deformation in the region adjacent to the

bainite [10]. During the early stages of growth, the bainite is able to absorb

some of the dislocations created by this plastic relaxation, resulting in a cer-

tain density of dislocations within the bainite but also ahead of the interface.

However, the high density of dislocations at the interface eventually prevents

it from moving because, in a displacive transformation, the interface must be

glissile, which means that the dislocations must be able to slide freely. As a

result, the bainite plate grows until it is stopped by the plastic deformation of

the austenite, resulting in a size smaller than the austenite grain size. Further

transformation takes place through the formation of new plates, leading to the
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development of the characteristic sheaf morphology.

It has been shown that there is a well-defined temperature Bs above

which no bainite will form. The volume fraction of bainite increases with un-

dercooling, similar to the formation of martensite. During isothermal trans-

formation, the fraction of bainite formed follows a sigmoidal function of time,

eventually reaching an asymptotic limit that remains constant even when sig-

nificant amounts of austenite are still present after prolonged heat treatment

[10]. This is because the partitioning of carbon increases the carbon content in

austenite until it reaches the composition of the T0 curve, as explained in Figure

2.5. At this point, the displacive mechanism is no longer thermodynamically

possible, and further transformation can only occur by increasing undercooling.

2.1.5 Microstructural Analysis

Etching

To characterize the microstructure, it is essential to distinguish the microstruc-

tural constituents through contrasting techniques. Microstructural contrasting

refers to any technique that enables the identification and differentiation of the

microstructural constituents. Traditional characterization methods like LOM

require some topography on the sample’s surface to be able to distinguish the

microstructural constituents.

Electrochemical etching is a widely used method for structural etching,

which generates contrast in metallographic specimens. During this process,

reduction and oxidation reactions occur between the etchant and the sample’s

surface [22]. The different phases in the sample are selectively attacked based on

their electrochemical potential [23], which is determined by the concentration

of alloying elements, primarily carbon. The result is a topographical contrast

that can be observed under an optical microscope.

The electrochemical potentials of the constituents depend not only on

composition but also on physical inhomogeneities, such as inclusions, grain

boundaries, or crystal orientations. These areas usually have higher potentials

and are more severely attacked, revealing the grain boundaries.

Precipitation or color etching is another type of etching technique that

operates on a different physical principle. This method involves the reaction
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between the etching solution and the metal surface, leading to the formation

of stable precipitates with different thicknesses on the polished surface. The

thickness of these layers is determined by the chemical potential and can vary

from 40 to 500 nm [24]. When light reflects off the sample, the presence of these

precipitate layers causes destructive interference, resulting in a diverse range of

colors visible when observed through an optical microscope.

Nital is the most common electrochemical etchant used to reveal the mi-

crostructure of carbon steels. It consists of a solution of concentrated nitric acid

(HNO3) in ethyl alcohol. Most recipes in the literature implement a solution

of 2% nitric acid, but the concentration can range between 1% and 5% [23]. In

the context of this work, we used a mixing ratio of 100 ml ethanol with 2.5 ml

65% nitric acid.

Classical Microstructural Analysis

The classical microstructural analysis of metals and alloys involves several steps,

including metallographic preparation, contrasting, and examination under an

optical microscope. The conventional approach for evaluating microscopic im-

ages relies heavily on visual assessment performed by an expert. However, this

method is associated with a significant degree of subjectivity that depends on

the metallographer’s experience and training, as well as the choice and quality

of the contrasting method.

With the advent of modern materials with increasingly finer microstruc-

tures, traditional methods have become less effective for accurate analysis. The

conventional LOM has reached its resolution limit, making it difficult to resolve,

for example, individual lamellae of pearlite or the thin sub-units of bainite. As

a result, the structure of pearlite appears as dark colonies, and important sub-

structure information is lost due to destructive interference.

To overcome the low resolution of LOM, SEM has emerged as a com-

plementary imaging technique. SEM can achieve a resolution of up to 1 nm,

making it a high-resolution microscopy technique, unlike the LOM, which has a

resolution limit of approximately 350 nm dictated by the Abbe diffraction limit.

SEM images can provide greater detail, making it essential for unambiguous mi-

crostructural characterization of modern steels. However, SEM imaging comes

with the challenges of being costly, time-consuming, and more complex in terms
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of the contrast mechanism, thereby making the acquisition of proper images

more difficult. Nevertheless, due to the advantages of its higher resolution,

SEM imaging remains an essential component in this context.

Modern Approaches to Microstructural Analysis

Electron backscatter diffraction (EBSD) is a widely used measurement technique

in materials science that has gained widespread popularity in recent decades. It

is carried out in a SEM equipped with special EBSD detectors. During EBSD

measurement, an electron beam is incident on the sample, and the electrons

interact with the atomic nuclei, causing both elastic and inelastic interactions.

Some of the elastically scattered electrons are deflected back towards the sample

surface and interact with the crystal lattice of the sample, following Bragg’s law,

and create a diffraction pattern known as a Kikuchi pattern. This pattern can

be compared with a database to obtain information about the crystal structure

and orientation [25, 26].

By scanning EBSD over a selected sample area, a range of crystallo-

graphic information can be obtained, from which EBSD maps can be con-

structed. These maps serve as an additional source of information. Grain

boundaries can be defined by setting a threshold value for the misorientation

angle. The crystallographic orientation is represented in the Inverse Pole Figure

(IPF) using a triangle color scheme. The quality of the diffraction pattern, which

indicates lattice imperfections, is another important measure provided by EBSD.

Despite the additional information provided by EBSD, differentiating between

ferrite and bainite proves challenging due to their identical crystal structure.

However, the utilization of approaches that analyze the image quality of the

diffraction pattern has demonstrated the ability to differentiate between these

two phases [1, 21]. This is primarily because bainite exhibits higher dislocation

densities compared to ferrite, attributed to its distinct formation mechanism.

There are various metrics that provide information about the quality of

diffraction patterns. One common approach is to use the Image Quality (IQ)

metric, which describes the quality of a diffraction pattern. An IQ map can

be constructed by mapping the IQ values measured for each diffraction pattern

obtained during scanning to a gray or color scale [27]. This approach has been

extensively used in different studies, and several works have reported the use-

fulness of the IQ map in analyzing the microstructure of materials [1, 28, 27, 29,
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30]. However, it is important to note that IQ values can be affected by various

factors, including sample preparation and contamination, surface topology, and

beam conditions [2, 31]. These factors can lead to variability in results and

make it challenging to achieve reproducible and objective characterization.

Additionally, the Confidence Index (CI) is a measure of the uniqueness

of the indexing of the Kikuchi patterns and provides an indication of the qual-

ity of the EBSD pattern. The CI evaluates the degree of agreement between

the measured pattern and the reference database, and can also be utilized to

differentiate between bainite and ferrite [28].

Bainite and martensite can be distinguished in principle by examining

these metrics that evaluate the quality of diffraction patterns. The average IQ

and CI tends to be higher for bainite due to a lower concentration of defects.

Figure 2.8 displays the distribution of average CI for each object in both sets of

samples.

Figure 2.8: Distribution of average CI for every object with compositions A and

C.

To address the limitations of methods that use diffraction pattern quality

metrics, alternative EBSD maps based on misorientation relationships have been

proposed [2, 32]. Local misorientations can be characterized using several pa-
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rameters. The Grain Orientation Spread (GOS) represents the average deviation

in orientation between each point in a grain and the grain’s average orientation

[31]. The Grain Average Misorientation (GAM) is a comparable metric that

calculates the average misorientation between neighboring measurement points

within a grain. The Kernel Average Misorientation (KAM) is similar to GAM

but is computed within a defined kernel of varying sizes. In this approach, the

misorientations between all neighboring points within the kernel are averaged

[31]. These parameters can be used to draw conclusions about local dislocation

densities and distinguish between microconstituents.

It is important to highlight that grain-based parameters are extremely

sensitive to the grain definition, which is why kernel-based parameters are often

preferred. However, since the classification in this study is object-based, it is

worthwhile to consider GOS and GAM as relevant parameters. Additionally,

it is worth noting that the grain definition for GOS and GAM differs from the

parent austenite grain (PAG) definition used in this work for object extraction.

Considering these parameters, a manual system for characterizing differ-

ent steel phases is theoretically possible. However, it would be very laborious

and time-consuming. By applying machine learning systems, the model can

identify relevant patterns in the data, achieve an objective and reproducible

characterization, and even surpass the efficiency of manual systems in a shorter

time.

Correlative microscopy is another modern approach to microstructural

analysis that enables the combination of different characterization methods to

overcome the limitations of each individual method [33]. Due to the differ-

ent physical interactions and detectors, features from various length scales and

complementary information sources can be combined, providing a more com-

prehensive understanding of the sample’s microstructure [5].

The first step in correlative microscopy is to generate images of the same

sample areas using different imaging techniques, such as LOM, SEM, and EBSD.

However, due to the different underlying physics of the image generation in these

techniques, simply overlaying images by translation, rotation, and scaling is not

possible. Additionally, acquisition conditions like the tilt angle or rotation can

make it difficult to align images [33]. To address this issue, image registration is

employed to align two or more array-shaped image data, typically images of the

same object captured at different times, angles, and/or using different sensors
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[34].

Image registration involves several steps. The first step is feature detec-

tion, which involves identifying distinct objects in each image. In the feature

matching step, identical data points in the two images are related to each other.

A transformation model is then estimated, which involves determining the map-

ping function and its parameters. Finally, the source image is resampled and

transformed based on the estimated mapping function and parameters [34].

One way to implement the image registration algorithm is by using the

open-source software Fiji [7]. The feature extraction step can be completed

automatically using the SIFT (Scale-Invariant Feature Transform) plugin [35].

However, in the case of the images used in this work, the SIFT algorithm could

not detect features due to the presence of fine microstructural features. There-

fore, manual feature extraction had to be performed. To perform image regis-

tration, the bUnwarpJ plugin [8] can be utilized, which uses elastic deformation

to align the images.

This technique can be applied to any source of information that generates

a large number of possible combinations. This allows for a more comprehensive

and unbiased characterization. Moreover, by registering LOM images to the IQ

map, it becomes possible to overlay other EBSD maps onto the LOM image [36].

Figure 2.9 illustrates some of the potential ways to combine different sources of

information.

31



Universidad de Mar del Plata

Facultad de Ingenieŕıa

Julián Vega

Mat.: 13.826

Figure 2.9: An overlay of a selection of EBSD maps with the Nital-etched LSM

image registered on it. From left to right: LSM - GAM - KAM - IPF - boundaries

based on the relative rotation angles of the crystallites to each other (red: 2-5°,
green: 5-15°, blue: greater than 15°) [37].

2.2 Fundamentals of Machine Learning

2.2.1 Introduction

Artificial Intelligence (AI) is a rapidly growing field that has gained significant

attention in recent years. Essentially, AI refers to the study of agents, such

as computer systems, that can perform actions based on perceptions from the

environment [38]. These systems have the ability to learn and complete tasks

that previously required human intelligence.

Machine learning is a field of artificial intelligence that enables computer

systems to learn and improve their performance on a task without being explic-

itly programmed [39]. Instead, these algorithms allow the computer to identify

patterns and relationships in data by analyzing large amounts of information

and using statistical models. Through this process, the system can make predic-

tions or decisions based on the patterns it has learned. To provide a thorough

understanding of the methodologies employed in this research, the following
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Julián Vega

Mat.: 13.826

section will provide a detailed explanation of machine learning approaches.

The growth and impact of AI and ML are reflected in the increasing

number of publications per year in these fields. The 2022 AI Index report [40],

which tracks the progress of AI research and development, shows a significant

rise in the number of publications on these fields in recent years, as depicted in

Figures 2.10 and 2.11. This growth is attributable to various factors, such as

the availability of big data, improvements in computer processing power, and

advances in algorithm development. For instance, the report states that the

cost of training an image classification system has decreased by 63.6%, while

training times have improved by 94.4% since 2018. Another noteworthy aspect

is the diagnostic capabilities of AI algorithms, which can match or even surpass

those of expert doctors for numerous conditions, particularly those that rely on

image analysis [41]. As a result of these advances, AI is expanding into a wide

range of fields, including materials science.

Figure 2.10: Number of AI publications in the world between 2010 and 2021.
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Figure 2.11: Number of AI publications by field of study in the world between

2010 and 2021.

Numerous studies have demonstrated the effectiveness of various meth-

ods in accurately, objectively, and reproducibly characterizing complex steels.

For instance, support vector machine (SVM) models have been utilized in some

studies to classify the microstructures of steels based on morphological param-

eters [4, 42]. Müller et al. [43] employed a combination of textural parame-

ters, including the Haralick parameter and the Local Binary Pattern, to classify

pearlite, martensite, and four types of bainite using SVM. Tsutsui et al. [44]

used crystallographic features obtained by EBSD to classify martensite and

bainite using both SVM and Random Forest. Zaefferer et al. used the Kernel

Average Misorientation (KAM) to identify and determine the volume fraction

and localization of bainite in a low-alloyed TRIP [45]. Martinez Ostormujof et

al. used an U-Net architecture to perform semantic segmentation of martensite

and ferrite with EBSD maps [30].Another study employed a Fully Convolutional

Neural Network (FCN) to perform pixel-wise segmentation of multiple phases

in steel microstructures [6].

2.2.2 Machine Learning

As mentioned earlier, machine learning is a subfield of artificial intelligence,

in which computers can learn to solve complex tasks without being explicitly

programmed to do so [39]. The fundamental premise of machine learning is

to use statistical models to identify patterns in data that may not be readily
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apparent to humans. To perform a machine learning task, the first step is

to select an appropriate algorithm that can perform the analysis. Then, a

set of hyperparameters that regulate the learning process are chosen, and the

data is supplied to the algorithm for analysis. The computer uses an iterative,

statistical, trial-and-error process to decipher the patterns present in the data,

ultimately learning to make accurate predictions for new data based on what it

has learned from the training data.

Machine learning can be classified into three broad categories based on

the type of feedback that accompanies the inputs and thus determines the type

of learning. The first category is supervised learning, where the inputs are

accompanied by so-called ground truths or labels, and the model is trained to

learn the function that maps the inputs to the ground truths [46].

The second category is unsupervised learning, where the computer learns

to decipher patterns in the data without explicit feedback. Clustering is a

common example of unsupervised learning, where the computer analyzes the

features or attributes of the data and aims to identify groups or clusters that

share similar characteristics, without any prior knowledge of the class definition.

The third category is reinforcement learning, where the agent learns

through punishments or rewards. Reinforcement learning is typically used in

scenarios where the model interacts with the environment and learns to take

actions that maximize a reward [47].

In this work, the focus is on supervised learning, as the goal is to train

a model to classify bainite and martensite objects. Therefore, the machine

learning algorithm will use labeled data consisting of EBSD matrices for each

object, and attempt to learn the function that maps the input data to the correct

classification of either bainite or martensite.

Supervised learning problems can be divided into two main categories:

classification and regression. In a classification problem, the output is one of

a finite set of values, such as bainite or martensite. On the other hand, in a

regression problem, the output is a continuous number [46]. In material science,

image segmentation is another commonly employed supervised learning task

that involves pixel-wise classification. The goal of image segmentation is to di-

vide an image into fragments and assign them labels, enabling the identification

of distinct regions or objects within the image.
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More formally, the task solved by supervised learning is that, given a

training set of N examples input-output pair:

(x1, y1), (x2, y2), ..., (xN , yN )

where each pair was generated by the unknown function y = f(x), discover

the function h that better approximates the true function f . The function h is

called the hypothesis about the world and we can say that is the model of the

data [38]. The outputs yi are the ground truth.

The effectiveness of a hypothesis is not determined by its performance

on the training set alone, but rather by its ability to handle unseen inputs. To

evaluate its performance on new data, we need to use a separate set of input-

output pairs known as the test set. A hypothesis is said to generalize well if it

can accurately predict the outputs of unseen data. In other words, a hypothesis

that performs well on both the training and test sets is more likely to be a good

model of the underlying function than a hypothesis that only performs well on

the training set.

A model’s ability to generalize well is affected by two important factors:

bias and variance. Bias refers to the tendency of a predictive hypothesis to

deviate from the expected value when averaged over different training sets . In

other words, it is the difference between the expected predictions of the model

and the true values in the data. High bias models are typically too simplistic and

unable to capture the complexity of the data, resulting in underfitting. On the

other hand, variance refers to the variability in the model’s predictions when it

is trained on different subsets of the data [38, 48]. Models with high variance are

often too complex and overfit to the training data, leading to poor performance

on new data. Balancing the bias-variance tradeoff is a key challenge in machine

learning, as models with low bias and low variance are more likely to generalize

well to new, unseen data.

All machine learning algorithms aim to minimize a loss function in order

to learn. The loss function evaluates the discrepancy between the predicted out-

put and the actual output for each example in the training data. The objective

of the algorithm is to optimize the model’s parameters so as to minimize this

function. Therefore, the best hypothesis or model is the one with the lowest

loss, as it exhibits the least difference between its predictions and the actual

values.
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The hypothesis h is characterized by a set of parameters W, and the

type of model determines the number of parameters and their relationship to

h. The goal of the learning algorithm is to minimize the loss function, which is

achieved using the gradient descent algorithm. To begin training, we initialize

the parameters W, then calculate an estimate of the gradient and move in the

direction of the steepest descent, repeating the process until the model converges

to a point in weight space with a minimum loss value. The gradient descent

algorithm can be expressed as follows [38]:

for wi in W do:

wi = wi − α
∂Loss(W )

∂wi
(2.1)

Here, α represents the learning rate, which decides the step size that

determines how much each iteration adjusts the parameter values. This hyper-

parameter can be set as a fixed constant or can be decayed over time as the

learning process proceeds. The choice of learning rate affects the convergence

of the algorithm and can significantly impact the performance of the model. A

learning rate that is too high can lead to overshooting and divergence, while

a learning rate that is too low can result in slow convergence and suboptimal

solutions. Therefore, selecting an appropriate learning rate is a vital component

in the training process of a machine learning model.

2.2.3 Support Vector Machine

Support Vector Machine (SVM) is a popular machine learning algorithm used for

classification and regression analysis. Although their popularity has decreased

with the emergence of deep learning networks and random forests, SVMs are

still widely used in many applications. SVMs are particularly useful when the

available data has a clear separation between classes, or when the goal is to

identify a subset of data points that are important for classification [49].

SVMs are designed to construct a maximum margin separator [38], which

is a decision boundary that has the largest possible distance to example points.

The idea is to choose a decision boundary that will generalize well, which means

it will perform well on new data that is not part of the training set. The

SVM algorithm finds the maximum margin separator by solving an optimization
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problem that seeks to maximize the distance between the decision boundary

and the closest example points. Figure 2.12 provides a clear illustration of the

difference between SVM and other models like linear regression, highlighting

how SVM’s unique approach can lead to improved generalization performance.

Figure 2.12: Support vector machine classification: (a) Two classes of points

and three candidate linear separators. (b) The maximum margin separator

(heavy line), is at the midpoint of the margin (area between dashed lines). The

support vectors (points with large black circles) are the examples closest to the

separator; here there are three. [38]

One of the attractive features of SVMs is that they can create a linear

separating hyperplane, but they also have the ability to embed the data into a

higher-dimensional space, using the so-called kernel trick [38, 49]. This means

that data that are not linearly separable in the original input space can often be

easily separated in the higher-dimensional space. The kernel function computes

the inner product of two points in the higher-dimensional space without actually

computing the transformation [49]. Figure 2.13 shows an example of how the

kernel trick can be used to find a non linear decision boundary. There are

several types of kernel functions, such as the linear kernel, polynomial kernel,

and Gaussian (or radial basis function) kernel, among others. The SVM classifier

employed in this work utilizes the radial basis function as its kernel.
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Figure 2.13: (a) A two-dimensional training set with a circular decision bound-

ary (b) The same data after mapping into a three-dimensional input space. The

circular decision boundary in (a) becomes a linear decision boundary in three

dimensions [38]

SVMs are nonparametric, which means that the separating hyperplane

is defined by a set of example points, not by a collection of parameter values

[50]. The SVM model keeps only the examples that are closest to the separating

plane, which are called support vectors. This property of SVMs allows them to

be flexible enough to represent complex functions while also being resistant to

overfitting.

In summary, SVMs are a powerful supervised learning model that can

create a maximum margin separator to generalize well on new data, create linear

separating hyperplanes, and embed the data into a higher-dimensional space

using kernel functions. SVMs are nonparametric and resistant to overfitting,

while still being flexible enough to represent complex functions.

2.2.4 Random Forest

Random Forest is a powerful ensemble learning algorithm that combines multi-

ple decision trees to make more accurate predictions. It is a type of supervised

learning algorithm that can be used for both regression and classification prob-

lems.

Ensemble learning is a machine learning approach that involves selecting
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multiple hypotheses, known as base models, and combining their predictions

through techniques such as averaging, voting, or other machine learning algo-

rithms [38]. This approach is used to reduce both bias and variance. Ensemble

models can be more expressive and have lower bias than individual base models

with restrictive hypothesis spaces. Additionally, by combining multiple classi-

fiers, it is less likely to misclassify new examples, which helps to reduce variance

[38].

A decision tree is a model that recursively divides the data into subsets

based on the most significant features or attributes. The tree is constructed by

starting with a single node, called the root, that represents the entire dataset.

Then, at each internal node, the algorithm selects a feature to split the data

into two or more subsets, based on a particular criterion such as entropy, Gini

impurity, or information gain. This process is repeated for each subset, creating

a tree-like structure with branches representing different paths or decision rules.

At the leaves of the tree, the final prediction or decision is made.

Figure 2.14: Simple example of a decision tree to illustrate the working principle

of decision trees in a straightforward manner. [51]

Ideally, each decision tree in a Random Forest should be independent,

as this would maximize the effectiveness of the ensemble learning technique. In

practice, it is not possible to achieve complete independence between trees, as

they share some of the same data and assumptions [38]. However, the Ran-

dom Forest algorithm can introduce some degree of independence by using a

technique called bagging (Bootstrap Aggregation).
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The bagging technique takes advantage of the fact that decision trees are

very sensitive to the data with which they are trained. Small changes in the

training set can result in significantly different tree structures. Bagging allows

each individual tree to take random samples from the data set with replacement,

resulting in different trees. For example, if we had the following training data

consisting of the grain sizes of a steel in micrometers (30, 35, 40, 45, 50, 55), one

of our decision trees in a Random Forest model might receive the following list

(30, 35, 35, 40, 40, 55), where some sizes are repeated due to the sampling with

replacement. This variation in the training sets used to create the trees helps

to reduce overfitting and improve the accuracy of the overall Random Forest

model.

In addition to bagging, Random Forest has several hyperparameters that

can be adjusted to optimize performance. But the most important and the one

used in this work is the number of trees. It has been demonstrated that as

the number of trees increases, the error function converges. Nevertheless, it is

important to note that this convergence does not imply that the error tends to

zero as the number of trees approaches infinity [52].

Overall, Random Forest has several advantages, including its ability to

handle high-dimensional data, detect feature importance, and handle missing

values. However, it can be computationally expensive and may not perform

as well in task like image classification. This is because Random Forest treats

each feature independently and makes decisions based on individual feature

thresholds, which may not adequately capture the spatial dependencies present

in image data.

2.2.5 Artificial Neural Network and Deep Learning

Artificial Neural Networks (ANNs) are a type of machine learning model that

is designed to resemble the structure and function of biological neural net-

works. ANNs are composed of interconnected computational units called neu-

rons, which transform an input signal into an output signal using a mathematical

function. The output signals are then propagated to the next layer of neurons,

and the process repeats until the network reaches its final layer [53].

Each neuron in an artificial neural network computes a linear combina-

tion of the inputs with the corresponding weights, which is then passed through
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a nonlinear function called the activation function. This function is an essential

component of ANNs, as it allows the network to represent complex, nonlinear

relationships. If the network were composed only of neurons that applied lin-

ear combinations of inputs, it could be reduced to a single neuron due to the

superposition principle, consequently limiting its ability to model only linear

functions [38].

The mathematical computation made by each neuron can be formally

expressed as:

aj = gj(
∑
i

wi,jai)

Here, aj represents the output of the neuron j, wi,j represents the weight

of the connection between neuron i and neuron j, ai represents the output of

neuron i, and gj represents the activation function associated with neuron j [38].

Rectified Linear Unit (ReLU) and Softmax are two common activation

functions used in neural networks and are the ones used in this work. ReLU is a

simple nonlinear function that is defined as g(x) = max(0, x), which means that

it outputs the input value if it is positive, and zero otherwise. ReLU is a popular

choice because it is computationally efficient and easy to optimize. Softmax is

another common activation function used in the output layer of neural networks

for classification tasks. Softmax normalizes the outputs of a layer so that they

sum to one, which makes it suitable for predicting the probability of each class.

Softmax is defined as [38]:

σ(zi) =
ezi∑K
j=1 e

zj

Here, zi is the input to the activation function for class i, and K is the

total number of classes

ANNs are composed of at least two layers of neurons: an input layer

and an output layer. Additional layers between the input and output layers are

known as hidden layers, and ANNs with multiple hidden layers are called deep

neural networks (DNN). By combining multiple units into a network, a complex

function can be created that captures the complexity of real-world data. At each

layer of the network, the values computed represent a different representation of

the input. Each layer transforms the representation produced by the preceding
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layer to create a new representation. As a result, deep networks often uncover

meaningful intermediate representations of the data. However, the meaning of

internal layers in deep networks may sometimes be unclear to humans, even if

the output is correct [38].

Figure 2.15: Schematic representation of a deep neural network with 3 hidden

layers. [54]

Deep neural networks learn by using the gradient descent algorithm, as

explained in Equation 2.1. However, for multilayer networks, the loss function

is a complex function of the weights and activations of the previous layers.

Therefore, the backpropagation algorithm is used to calculate the derivatives of

the loss function with respect to each of the weights by applying the chain rule.

These calculated gradients are then used to update the parameters.

Given that DNNs typically have a large number of parameters, they re-

quire a considerable amount of data to effectively learn the features of the data.

Data augmentation addresses this need by artificially expanding the training

dataset through the application of various transformations and modifications

to the existing data samples. By introducing random modifications such as

rotations, translations, scalings, and distortions to the original data, data aug-

mentation significantly improves the diversity and variability within the training

set. As a result, the utilization of data augmentation leads to improved gen-

eralization and robustness of DNNs, enabling them to better handle various

real-world scenarios and improve overall performance. Data augmentation is

also used in CNNs.
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The methods discussed so far (SVM, RF and ANNs) take vectors with

a given number of attributes as input and are not explicitly designed to handle

image inputs. Although it is possible to convert an RGB (red, green, blue) image

of size n by m pixels into a flattened 1D vector with 3×n×m attributes and use

these methods, this approach overlooks the fact that the RGB triplets belong

to the same pixel and the significance of pixel adjacency in image data. As a

result, applying these methods to vectorized images can lead to a loss of essential

spatial information and, consequently, reduce accuracy [38]. Furthermore, using

a flattened vector of an image results in a large number of attributes, which leads

to an extremely high number of parameters in a conventional neural network.

This vast parameter space requires correspondingly vast numbers of training

images and a huge computational power to run the training algorithm [38].

2.2.6 Convolutional Neural Network

Convolutional neural networks (CNNs) are used to address the limitations of

previous methods in image manipulation by learning and extracting relevant

features from images or grid-structured data that exhibit some kind of rela-

tionship between adjacent pixels. CNNs work in a similar way to traditional

neural networks, but have special layers that apply operations that take into

account the spatial relationship between inputs. These layers have carefully de-

signed connections to extract important features from the inputs while reducing

the number of parameters to be learned [53]. CNNs are typically composed of

various types of layers including convolutional layers, pooling layers, activation

layers, and fully connected layers used for classification.

The convolution layer is the fundamental building block of a CNN and

is responsible for extracting features from an input image. The convolution

operation involves applying a filter or kernel to every pixel in the input image,

and computing the dot product between the filter parameters and the matching

grid in the input volume. The parameters of the filter are shared across the

entire convolution, which is sensible since a particular shape present in any part

of the image should be processed in the same way, regardless of its specific

spatial location. This also helps reduce the number of parameters. Typically,

the height and width of the filter in a convolutional layer are smaller than those

of the layer input, while its depth is the same as that of the input [53]. The

resulting grid after the convolution is called a feature map. An example of how
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the convolution is applied is shown in Figure 2.16.

Figure 2.16: An example of convolution operation is shown, where a 3×3 filter is

applied to a depth 1 input (such as a black and white image) to extract features

and produce a feature map. [55]

In order to extract a diverse set of features from the input image, it is

common to use multiple filters in each convolutional layer, as each filter captures

a distinct aspect of the image. The number of filters used in each layer directly

affects the model’s capacity, as it determines the number of learnable parameters

[53]. Furthermore, increasing the number of filters results in more feature maps

being produced in subsequent layers. Typically, as we move to deeper layers,

the spatial dimensions of the feature maps decrease due to pooling while the

depth in terms of the number of feature maps increases.

Pooling layers are used to reduce the spatial dimensions of the feature

maps produced by the convolutional layers. This helps reduce the number of

parameters, which can lower computation time, save memory, and prevent over-

fitting [56]. Max pooling is the most common pooling operation, which involves

taking the maximum value within a small neighborhood of the feature map and

outputting it as a single value in the output map. By doing this, the spatial

resolution of the feature map is effectively reduced by a factor of the pooling

size. Figure 2.17 demonstrates how pooling is applied.
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Figure 2.17: Example of max pooling applied with a 2x2 window and a stride

of 2. With a stride of 2, the window is moved 2 pixels for each step. [56]

In a CNNs, the activation layer typically uses the ReLU function just

like in a regular neural network. The ReLU activation function is applied to

each value in a layer to create thresholded values that are then passed to the

next layer [53]. Unlike pooling and convolution operations, applying the ReLU

function does not alter the dimensions of a layer, as it is a one-to-one mapping

of activation values.

After sufficiently reducing the dimensions of the input, the resulting out-

put is flattened and typically fed into one or more fully connected layers, which

perform the final classification of the image. These layers are similar to the ones

used in a traditional neural network, and they typically use a softmax activa-

tion function to produce a probability distribution over the possible classes. An

example of a typical architecture of a CNN is shown in Figure 2.18.
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Figure 2.18: Example of a CNN architecture. The figure shows how the spatial

dimensions of the input are reduced after applying convolutional and pooling

layers, and how the depth of the feature maps increases. Fully connected layers

are used at the end to make predictions. A Softmax activation function is

employed at the end of the network to generate a probability distribution across

the possible classes. [56]

2.2.7 K-Fold Cross-Validation

K-fold cross-validation is a statistical technique for evaluating the performance

of machine learning models. It involves dividing the dataset into k equal-sized

subsets, or ”folds,” where k is usually a number between 5 and 10. For each fold,

the model is trained on the remaining k-1 folds and evaluated on the validation

set. The process is repeated for each fold, and the average performance metric

across all k folds is computed to estimate the model’s performance.

K-fold cross-validation has two primary benefits. Firstly, it provides a

more unbiased estimate of model performance on new, unseen data compared

to a simple train/test split [57]. Secondly, k-fold cross-validation is particularly

useful when the dataset is small because it allows each example to be used for

both training and validation, but not at the same time [38]. This ensures that

all the data is utilized effectively to train and evaluate the model. Additionally,

k-fold cross-validation can also be used to compare the performance of different

models or hyperparameters, making it a valuable tool for testing and comparing

models.
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Chapter 3

Experimental Procedure

3.1 Sample Preparation

The test samples used in this work were supplied by Aktien-Gesellschaft der

Dillinger Hüttenwerke and consist of dilatometer samples of known chemical

composition and heat treatment. The samples were divided into groups based

on their chemical composition, and each group was assigned a letter (A, B,

C, etc.). Within each group, the samples were numbered according to their

cooling rate, with lower numbers indicating higher cooling rates and higher

numbers indicating lower cooling rates. For the purposes of this work, only the

A and C steel samples were used. Their composition can be seen in Table 3.1.

Aditionally, the cooling rates for each A and C samples can be seen in Tables

3.2 and 3.3

Obtaining reproducible micrographs is essential for this work for several

reasons. First, the images obtained by the different methods must be of high

quality to ensure that correlative microscopy can be performed effectively. Any

scratches, impurities, or etching artifacts could hinder the procedure and com-

promise the accuracy of the results. Secondly, it is important to ensure that the

different procedures do not alter the assignment of ground truths, as this could

affect the validity of the results. Finally, we must take care to avoid allowing

artificial intelligence models to learn features that are not inherent to the mate-

rial itself, but are instead related to the processing. By obtaining high-quality,
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Julián Vega

Mat.: 13.826

A C

Name

C 0.088 0.219

Table 3.1: Composition of samples A and C.
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Sample Cooling Rate (in °C / s)

A1 3600

A2 2400

A7 56.25

A9 15

A11 5

Table 3.2: Cooling rate (in °C / s) for every A sample.

Sample Cooling Rate (in °C / s)

C1 18000

C3 1800

C5 360

C8 45

C10 11.25

Table 3.3: Cooling rate (in °C / s) for every C sample.
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Abrasive Material Duration

180 SiC (75 µm approx.) 1 min

320 SiC (46 µm approx.) 1 min

600 SiC (26 µm approx.) 1 min

1200 SiC (14 µm approx.) 2 min

6 µm Struers DiaDuo 2 6 min

3 µm Struers DiaDuo 2 3 min

1 µm Struers DiaDuo 2 5 min

OP-S 0.05 µm 2 x 2 min

Table 3.4: Metallographic preparation steps.

reproducible micrographs and carefully controlling the factors that could affect

the results, we can ensure the accuracy and reliability of our findings.

The samples were first mounted on a conductive powder suitable for use

in the scanning electron microscope. They were then ground and polished in

accordance with the steps outlined in Table 3.4. The grinding was performed

using the wet method, with the specimens being rotated 90° after each step until

the marks of the previous grit had completely disappeared. This typically took

the amount of time mentioned in Table 3.4. The polishing was then carried

out automatically by counter-rotating the samples to remove any unevenness

resulting from the grinding process.

After each grinding and polishing step, the specimens were cleaned with

absorbent cotton under running water to remove any residues and metal dust.

Subsequent rinsing with ethanol and drying with compressed air completed the

respective preparation step.

Correlative microscopy involves taking micrographs of the same area of

a specimen using different methods to gain more information about the mi-

crostructure. In order to capture images of the same area using different mi-

croscopy techniques, it is necessary to clearly mark a region of interest (ROI) on

each specimen. For this purpose, a pattern of indentations was used to define
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the ROI, covering an area of 500 um x 500 um on each sample. The patern can

be seen in Figure 3.1.

Figure 3.1: Region of interest (ROI) marked with a pattern of indentations on

a light optical microscope image of sample C10.

After marking the ROIs and polishing the samples up to the OP-S, EBSD

measurements were conducted on the ROI of each sample. Once the EBSD

analysis was successfully completed, the samples were repolished using a 1 µm
abrasive and then etched with Nital for approximately 30 seconds. Finally,

optical microscopy (LOM) and scanning electron microscopy (SEM) images were

taken after the etching process.
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3.2 Experimental Methods

3.2.1 Electron Backscatter Diffraction

EBSD measurements were conducted using a Zeiss Merlin equipped with an

EDAX detector. Data was processed and exported using OIM software. The

grain definition was based on a misorientation threshold of 5°, in compliance with

both the internal convention of Aktien-Gesellschaft der Dillinger Hüttenwerke

and the ASTM E2627 standard for EBSD grain size determination [58].

To ensure accurate results, EBSD requires a flat surface. Thus, polishing

with OP-S was required. Therefore, polishing with OP-S was necessary. The

specimens were polished twice for two minutes each, as specified in Table 3.4,

using a colloidal silica suspension (OP-S) and water. The suspended oxide par-

ticles have a size smaller than 0.05 µm, resulting in a surface with irregularities

of comparable magnitude.

3.2.2 Light Optical Microscope

The micrographs were obtained using an Olympus OLS 4100 LSM microscope

and the Olympus LEXT software. Both optical microscope and laser scanning

microscope (LSM) images were obtained. Each image has a resolution of 1024

pixels x 1024 pixels. At 1000x magnification, a sample area of 130 µm x 130 µm
is imaged. In order to obtain a micrograph of the entire ROI, 25 pictures were

taken in a 5×5 grid and stitched together using the Microsoft Image Composite

Editor program. Parameters like brightness and contrast were kept constant in

order to get reproducible micrographies.
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Figure 3.2: Two individual sections of the ROI of sample A06 taken with LOM.

3.2.3 Scanning Electron Microscope

Scanning electron microscopy images were obtained using a Zeiss Supra micro-

scope at 1000x magnification. The operating voltage was set to 5 kV, with a

beam current of 10 nA and a working distance of 5 mm. The micrographs were

reconstructed using a combination of two detectors: a secondary electron detec-

tor, which provided 70% of the signal and enhanced topographical information,

and an InLens detector, which contributed the remaining 30% of the signal

and enhanced contrast between different phases. This combination resulted in

high-resolution images with detailed information on both topography and phase

difference, facilitating the accurate registration of images and identification of

phases.
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Figure 3.3: SEM image of objects: (a) 21 of sample A2 labeled as martensite,

(b) 92 of sample A2 labeled as martensite, (c) 31 of sample A7 labeled as bainite,

(d) 64 of sample A7 labeled as bainite.
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Figure 3.4: SEM image of objects: (a) 18 of sample C1 labeled as martensite,

(b) 19 of sample C1 labeled as martensite, (c) 10 of sample C8 labeled as bainite,

(d) 24 of sample C8 labeled as bainite.

3.3 Data Processing

3.3.1 Post Processing of EBSD Data

After acquiring the EBSD data, the software provides a one-dimensional list of

all the data. However, this data needs to be converted into two-dimensional

matrices in order be registered with the other images. A challenge arises due

to the format of the EBSD data, which is typically acquired in a hexagonal

grid. Since the pixels in the images are organized in a rectangular grid, the

EBSD data must be reformatted. In order to transform the data from the

hexagonal to the rectangular grid, interpolation is required because the step

sizes in the hexagonal grid are not uniform. These challenges are addressed
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by implementing a MATLAB script based on the MTEX [59] plugin, which is

specifically designed for processing EBSD data.

The output of this script is a 1320× 1320× 6 array containing the nor-

malized EBSD data of the ROI. The third dimension of the array corresponds

to the 6 EBSD maps: IQ, CI, KAM1, KAM3, GOS and GAM, respectively.

3.3.2 Registration

LOM images were registered to the EBSD IQ map using the open-source soft-

ware Fiji [7]. Feature detection was performed manually since SIFT extraction

did not yield satisfactory results. This involved selecting distinctive features and

correlating them between the two images. Once the features were extracted,

registration was carried out using the bUnwarpJ plugin [8].

Subsequently, SEM images were registered to LOM using the same method-

ology. The registration of LOM images to the IQ map enabled the overlaying

of the other EBSD maps. Finally, with the SEM images registered to the LOM

images, an overlay was constructed for each sample, incorporating LOM and

SEM images, as well as the EBSD maps: IQ, CI, KAM1, KAM3, GOS, and

GAM.

3.3.3 Prior Austenite Grain Boundary Mask

To extract individual objects for ML model training and classification, a mask

of the Prior Austenite Grain Boundaries (PAGB) [9] was manually created. The

mask was drawn using the open-source software GIMP [60] on the overlay of

optical images and EBSD maps, allowing for the identification and reconstruc-

tion of these boundaries. Figure 3.5 illustrates an example of this mask for the

ROI of sample A01.
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Figure 3.5: Left: Grain boundary mask of the ROI of sample A01. Right: LOM

image of the ROI of sample A01 with superimposed grain boundary mask.

3.3.4 Obtaining the objects

The objects used for training the ML model consist of arrays of six EBSD

maps: IQ, CI, KAM1, KAM3, GOS, and GAM. To obtain such objects, a series

of Python functions must be implemented on the EBSD array.

First, with the grain boundary mask, masks for each object are created.

These masks consist of black and white images with the same dimensions as the

overlay of registered images. The mask is a completely black image, except for

the particle object where it is white. The Python function responsible for this

is included in the Appendix Source Code 1. This approach utilizes the OpenCV

module [61], using the ”findContours” function to identify each object from the

grain boundary mask. These contours are then drawn on a black image and

filled with white, and each image is saved.

The grain masks are then applied to the EBSD array to obtain arrays

of each object with the six EBSD maps. To achieve this, the EBSD matrix is

loaded using the Python module SciPy [62]. The objects are then cropped to

the minimum height and width possible, and the resulting images are saved.

The Python function that implemnts this is included in the Appendix Source

Code 2.

Figure 3.6 displays the six EBSD maps of object 49 in sample C01, while

Figure 3.7 shows the corresponding object matrix.
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Figure 3.6: EBSD maps of object number 49 in sample C01, showing: (a) IQ,

(b) CI, (c) KAM1, (d) KAM3, (e) GOS, (f) GAM.
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Figure 3.7: Visualization of the EBSD maps matrix for object 49 in sample C01,

showing (from front to back): IQ, CI, KAM1, KAM3, GOS and GAM.

A graphical user interface (GUI) was developed to enable the quick cre-

ation of datasets from registered images. The GUI allows for the extraction of

LOM, SEM, and EBSD objects, and also includes several additional functional-

ities. These functionalities include the ability to visualize the extracted objects

in a unified interface, the capability to train basic RF or SVM models locally

for the classification of objects such as bainite or martensite, and the ability to

apply these models to predict the label of new objects.
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Figure 3.8: GUI for importing the registered images and extracting the objects.

Figure 3.9: GUI for training RF and SVM models on selected datasets.
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Figure 3.10: GUI for predicting the class of new objects with a selected model.

The final datasets consist of matrices that include the 6 EBSD maps of

objects from specimens A and C. For specimens A, the objects from A1 and A2

were classified as martensite, and a total of 83 objects were identified as such.

Meanwhile, objects from A7, A9, and A11 were classified as bainite, with a total

of 166 objects identified as such. Therefore, the dataset for specimen A consists

of 249 objects.

For specimens of composition C, samples C1, C3, and C5 were identified

as martensite, with a total of 224 objects. In contrast, specimens C8 and C10

were classified as bainite, with a total of 104 objects. Thus, the dataset for

specimen C comprises a total of 328 objects.

3.3.5 Ground-truth

A series of data acquired from the samples, images, and EBSD maps for each

object was submitted to a group of experts in order to obtain labels for every

object.

Firstly, the TTT diagram for the given composition of the samples and

the cooling curve for each sample was provided. Figures 3.11 and 3.12 show the

TTT diagrams for samples A and C, respectively. Additionally, dilatometry test
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Julián Vega

Mat.: 13.826

results for each sample were provided. Figure 3.13 and 3.14 show two examples

of these curves.

Figure 3.11: TTT diagram with the cooling curves for every A sample.

Figure 3.12: TTT diagram with the cooling curves for every C sample.
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Julián Vega

Mat.: 13.826

Figure 3.13: Dilatometry curve for sample A1.
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Figure 3.14: Dilatometry curve for sample A11.

Finally, LOM and SEM images, and EBSD maps were provided for each

object, along with misorientation angles distributions for each grain. Figures

3.15 and 3.16 show this data for object 24 of sample A1 and object 47 of sample

A11, respectively. Furthermore, Figures 3.17 and 3.18 show this data for object

19 of sample C1 and object 46 of sample C10, respectively.
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Figure 3.15: LOM and SEM images, EBSD maps, and misorientation angle

distribution for object 24 of sample A1, identified as martensite.

Figure 3.16: LOM and SEM images, EBSD maps, and misorientation angle

distribution for object 47 of sample A11, identified as bainite.
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Figure 3.17: LOM and SEM images, EBSD maps, and misorientation angle

distribution for object 19 of sample C1, identified as martensite.

Figure 3.18: LOM and SEM images, EBSD maps, and misorientation angle

distribution for object 46 of sample C10, identified as bainite.

With all this information, an objective classification of the objects be-

came possible. The results of the dilatometry test, along with the cooling path

indicated by the TTT diagram for each composition, provided valuable insights

for determining the class of each object. Additionally, through visual inspec-

tion, the presence of a lath-like structure characteristic of martensite in certain

objects, such as the one shown in Figure 3.15, could be identified. Moreover,

KAM measurements revealed higher misorientation in martensitic objects com-

pared to bainite, and the misorientation angle distribution exhibited distinct

patterns.
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Chapter 4

Results

4.1 Support Vector Machine

Two Support Vector Machine classifiers were trained separately for specimens

A and C using the SVC function of the Scikit-learn Python package [63]. The

input for this model is a one-dimensional vector with n features. To obtain this

vector from the stack of EBSD maps, all objects were first resized to have the

same dimensions as the largest object in terms of height and width. This was

achieved by padding the necessary amount of zeros. Once all objects had the

same dimensions, the 3-dimensional matrix was flattened into a one-dimensional

vector.

The SVM classifier for samples A was trained using 249 objects, consist-

ing of 166 bainite and 83 martensite samples. The largest A object had a height

of 333 pixels, while the widest had a width of 375 pixels. Therefore, all objects

were resized to a uniform size of 333 × 375 × 6. Consequently, the flattened

vector comprised 749,250 features.

The model was trained and tested using k-fold cross-validation with k=5

folds. The best results were found using the linear kernel. The summary of

results is presented in Figure 4.1. For each fold, the training accuracy was 1,

while the testing accuracy was 0.94, 1, 1, 0.94, and 0.89, respectively, resulting

in an average testing accuracy of 0.95 with a standard deviation of 0.04.
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Julián Vega

Mat.: 13.826

Figure 4.1: Bar plot of the accuracy of training and validation sets for each fold

of the SVM classifier of samples A.

The SVM classifier for samples C was trained using 328 objects, con-

sisting of 104 bainite and 224 martensite samples. The largest C object had

a height of 614 pixels, while the widest had a width of 683 pixels. Therefore,

all objects were resized to a uniform size of 614 × 683 × 6. Consequently, the

flattened vector comprised 2,516,172 features.

The model was trained and tested using k-fold cross-validation with k=5

folds. The best results were found using the linear kernel. The summary of

results is presented in Figure 4.2. For each fold, the training accuracy was 1,

while the testing accuracy was 0.95, 0.90, 0.89, 0.93, and 0.92, respectively,

resulting in an average testing accuracy of 0.92 with a standard deviation of

0.03.
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Julián Vega

Mat.: 13.826

Figure 4.2: Bar plot of the accuracy of training and validation sets for each fold

of the SVM classifier of samples C.

Most of the misclassified objects in the C group were small bainite objects

or those located at the edges of the full image. These objects were erroneously la-

beled as martensite. Excluding objects that are cut by the micrograph’s bound-

ary is reasonable as these grains do not provide a complete representation of

the grain structure. However, the accuracy of the models improves as the num-

ber of training samples increases, and the ratio of cut grains to whole grains is

relatively low. Furthermore, most incomplete objects were correctly classified.

Therefore, it was concluded that it is better to retain these objects in both the

training and test sets.
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Figure 4.3: (a) LOM image showing object 62 of the C01 sample labeled as

martensite but misclassified as bainite. (b) LOM image displaying object 49

of the C08 sample labeled as bainite but misclassified as martensite. (c) LOM

image showing object 23 of the C10 sample labeled as bainite but mistakenly

classified as martensite.

In summary, both SVMmodels achieved high accuracy despite not taking

into account the spatial nature of the data. The only hyperparameter that

needs to be defined is the kernel type, and it was found that the linear kernel

yielded better accuracy. Moreover, SVMmodels are relatively easy to implement

and train, and they offer fast and efficient classification. The somewhat lower

efficiency observed for the C-samples classifier can be attributed to the higher

dimensionality of the input vectors due to the larger size of the matrices, which

can make the classification task more challenging.

4.2 Random Forest

Two Random Forest classifiers were trained separately for specimens A and C

using the Scikit-learn Python package’s RandomForestClassifier function [63].

Like the SVM classifiers, these models also require a one-dimensional vector

with n features as input. Therefore, the same method used for obtaining the
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SVM classifier input vector was employed. Both RF classifiers were trained

using the same dataset as the SVM models, with the flattened vectors having

the same number of objects and features.

In the case of RF models, an important hyperparameter, the number of

trees (n) in the forest, had to be defined. To select this parameter, 10 models

with random train/test splits were trained for each number of trees, ranging from

10 to 500 in increments of 10. The mean accuracy and standard deviations were

recorded and presented in Figure 4.4. It was observed that the accuracy of the

RF models increases with the number of trees until it reaches a maximum value

asymptotically. After 100 trees, the accuracy oscillates around a certain value.

The optimal number of trees was determined to be n = 110, which yielded

high accuracy and low variance across random train/test splits for both sets of

samples.

Figure 4.4: Accuracy and standard deviation of RF forest models of samples C

as a function of the number of trees n.

After finding the optimal number of trees, a classifier for the A samples

72



Universidad de Mar del Plata

Facultad de Ingenieŕıa
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was trained and tested using k-fold cross-validation with k=5 folds. The sum-

mary of results is presented in Figure 4.5. For each fold, the training accuracy

was 1, while the testing accuracy was 0.96, 0.94, 1, 0.70 and 0.89, respectively,

resulting in an average testing accuracy of 0.89 with a standard deviation of

0.11.

Figure 4.5: Bar plot of the accuracy of training and validation sets for each fold

of the RF classifier of samples A.

The classifier of samples A misclassified only the martensitic objects,

which can be attributed to the class imbalance in the dataset. However, no

misclassification occurred for objects on the edges of the micrograph. Examples

of misclassified objects in this model can be observed in Figure 4.6.
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Figure 4.6: (a) LOM image showing object 49 of the A01 sample labeled as

martensite but misclassified as bainite. (b) LOM image displaying object 27

of the A02 sample labeled as martensite but misclassified as bainite. (c) LOM

image showing object 157 of the A09 sample labeled as bainite but mistakenly

classified as martensite.

The same procedure was followed to train the classifier of C samples.

The summary of results is presented in Figure 4.7. For each fold, the training

accuracy was 1, while the testing accuracy was 0.88, 0.84, 0.86, 0.94 and 0.92,

respectively, resulting in an average testing accuracy of 0.88 with a standard

deviation of 0.04.

Figure 4.7: Bar plot of the accuracy of training and validation sets for each fold

of the RF classifier of samples C.
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In this case, all the misclassified objects were from samples C08 and C10,

which were objects labeled as bainite. This misclassification is likely due to the

class imbalance present in the dataset. Additionally, some objects from the

edges of the micrograph were also misclassified. Examples of these misclassified

objects in this model can be observed in Figure 4.8.

Figure 4.8: Examples of misclassified objects in the Random Forest classifier

of samples C. (a) LOM image of object 39 from the C08 sample labeled as

martensite but classified as bainite. (b) LOM image of object 46 from the C10

sample labeled as martensite but classified as bainite. (c) LOM image of object

32 from the C10 sample labeled as bainite but classified as martensite.

In summary, although the RF models had good accuracy, they performed

worse than the SVM models. The training process for RF models took slightly

longer than for SVM models because the optimal number of trees had to be

found. The RF models were also found to be more susceptible to class imbalance

than SVM models. Moreover, while both RF and SVM models are easy to

implement and have high accuracy, they are not specifically designed to work

with images, and they may struggle to find patterns in more complex data.

Therefore, their accuracy may decrease when classifying multiple classes, such

as different types of bainite or ferrite.

4.3 Deep Neural Network

To improve accuracy and enable multiclass classification, training a deep neural

network was considered. DNNs are theoretically better equipped to recognize
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complex patterns in data than RF and SVM models. However, they are not

specifically designed for image processing.

Despite testing several DNN architectures, none achieved high accuracies.

Furthermore, the training processes did not exhibit signs of improvement.

The primary issue with using a DNN for image processing is that flat-

tened matrices lead to a high number of input features, resulting in many pa-

rameters even in the first layer. Consequently, these architectures had millions

of parameters, which necessitate a vast number of training examples. This

problem can be mitigated by employing a convolutional neural network.

4.4 Convolutional Neural Network

Given the complexity and high dimensionality of the data, convolutional neural

networks are a natural choice for this problem. CNNs are particularly adept

at identifying and extracting relevant different level features from images, mak-

ing them an ideal tool for this classification tasks. Moreover, CNNs can sig-

nificantly reduce the number of parameters required for the model, enabling

effective training with a limited number of examples. However, training a CNN

is a computationally expensive process that requires a deep understanding of

machine learning fundamentals, including defining an appropriate architecture

and selecting hyperparameters that optimize performance.

To optimize the performance of the CNN models, various hyperparame-

ters were experimented with, including the number of convolutional layers, the

number of filters in each layer, the kernel size, and the pooling method. The

general strategy to improve the performance of the model was to reduce the

number of parameters as much as possible while maintaining a complex enough

model to learn the features of the data. The hyperparameters were tuned based

on their effect on the performance metrics of the model. Specifically, the aim was

to maximize accuracy while minimizing overfitting and computational complex-

ity. The hyperparameters that resulted in the best performance were selected

for the final model.

The same CNN architecture is used to classify both specimens A and C,

with the only difference being the input size. The architecture starts with two

convolutional layers, each with 16 filters and activation layers. This is followed
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by a max pooling layer with a sliding window of size 2 × 2, which reduces the

input’s height and width by half. Then, two more convolutional layers with

32 filters and activation layers follow, and another max pooling layer with the

same sliding window size. After that, two more convolutional layers with 64

filters and activation layers follow, and then another max pooling layer with the

same sliding window size. The features are then further reduced using average

pooling with a kernel size of 5 × 5, and the resulting matrix is flattened. The

final layers consist of a fully connected network with 64, 32, and 16 neurons,

and a softmax layer with two outputs to predict the class. A visual scheme of

the CNN architecture can be found in Figure 4.9.

Figure 4.9: Visualization of the CNN architecture for both models created using

Python’s visualkeras module [64]. Feature shapes are not to scale for visual

clarity.
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Both models use a kernel size of 3 × 3 in every convolution layer. The

ReLU activation function is applied to every layer, except for the final classifi-

cation layer, which uses a softmax function. The ”padding” argument in every

convolution is set to ”same” so that downsampling occurs only in the pooling

layers and not in the convolutional layers. The Adam optimizer is used with a

learning rate of 0.000025, and the sparse categorical cross-entropy loss function

is used for training. The batch size was set to 1.

All CNNs were trained using a Google Colab Pro account, which provided

access to a Tesla T4 GPU and 25 GB of RAM. This setup enabled faster training

compared to a local environment.

The classifier for samples A was trained using data augmentation, which

involved rotating some objects by random angles to increase the size of the

training set. The input shape was 333 × 375 × 6, and the dataset consisted of

498 objects. With this input shape and the architecture mentioned above, the

total number of parameters in the model was 112,082. The model was trained

for 30 epochs and tested using k-fold cross-validation with 5 folds. The testing

and training accuracies are shown in Figure 4.10. The testing accuracy for each

fold can also be found on Table 4.1, where they can be compared with the results

for the other models. The mean testing accuracy was 0.990, with a standard

deviation of 0.007.

Figure 4.10: Bar plot of the accuracy of training and validation sets for each

fold of the CNN classifier of samples A.
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The accuracy plot for the second fold as a function of training epochs is

shown in Figure 4.11, while the accuracy plots for the other folds can be found

in the appendices (Figures 5.1, 5.2, 5.3, and 5.4). The loss plot for the second

fold is shown in Figure 4.12, and the remaining loss plots can be found in the

appendices (Figures 5.5, 5.6, 5.7, and 5.8).

Figure 4.11: Accuracy plot for the second fold as a function of training epochs

for samples A.
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Figure 4.12: Loss plot for the second fold as a function of training epochs for

samples A.

This model achieved very high accuracy. However, it was observed that

the train and test accuracy fluctuated due to the limited number of training

objects in the dataset. To address this issue, data augmentation was consid-

ered, but it was limited by the available RAM. Therefore, the model’s perfor-

mance and reproducibility can be further improved with more data. Another

alternative approach to utilize more data augmentation could involve resizing

the objects to smaller dimensions, but this may result in information loss and

would require revalidating the model’s robustness.

The input shape of classifier for samples C was 700 × 700 × 6 and the

dataset consisted of 316 objects. The larger size of the objects prevented the

use of data augmentation as it required a large amount of RAM. With this

input shape and the architecture used, the total number of parameters in the

model was 275,922. The model was trained for 50 epochs and tested using k-fold

cross-validation with 5 folds. The testing and training accuracies are shown in

Figure 4.13. The testing accuracy for each fold can also be found on Table 4.1,

where they can be compared with the results for the other models. The mean

testing accuracy was 0.991, with a standard deviation of 0.009.
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Figure 4.13: Bar plot of the accuracy of training and validation sets for each

fold of the CNN classifier of samples C.

Figure 4.14 shows the accuracy plot for the first fold as a function of

training epochs. The accuracy graphs for the other folds can be found in the

appendices in Figures 5.9, 5.10, 5.11, and 5.12. The loss plot for the first

fold is shown in Figure 4.15, and the remaining loss plots can be found in the

appendices in Figures 5.13, 5.14, 5.15 and 5.16.
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Figure 4.14: Accuracy plot for the first fold as a function of training epochs for

samples C.

Figure 4.15: Loss plot for the first fold as a function of training epochs for

samples C.

This model also achieved very high accuracy but showed more fluctu-

ations in accuracy and loss due to the smaller number of objects. Therefore,

the model’s performance and reproducibility can also be further improved with
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more data.

Figures 4.16 and 4.17 depict two inputs used in the CNN models. Figure

4.16 shows object 49 from sample C01, labeled as martensite, while Figure 4.17

shows object 20 from sample C10, labeled as bainite. Some visible differences

can be observed between the two figures, such as the IQ and CI maps being

brighter for the object labeled as bainite. This is because bainite typically has a

lower dislocation density than martensite, resulting in higher quality diffraction

patterns. Figures 4.18 and 4.19 show a group of selected feature maps for these

to objects. As this is the output of the first convolution layer, the feature maps

do not differ much from the inputs and there are no marked differences between

the objects

Figure 4.16: EBSD maps of object number 49 in sample C01, showing: (a) IQ,

(b) CI, (c) KAM1, (d) KAM3, (e) GOS, (f) GAM.
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Figure 4.17: EBSD maps of object number 20 in sample C10, showing: (a) IQ,

(b) CI, (c) KAM1, (d) KAM3, (e) GOS, (f) GAM.

Figure 4.18: Feature maps number (a) 1, (b) 5, (c) 6, (d) 7, (e) 8, and (f) 13

obtained after the first convolution layer for object 49 of sample C01.
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Julián Vega

Mat.: 13.826

Figure 4.19: Feature maps number (a) 1, (b) 5, (c) 6, (d) 7, (e) 8, and (f) 13

obtained after the first convolution layer for object 20 of sample C10.

Furthermore, Figures 4.20 and 4.21 display a selected group of feature

maps obtained after the third convolution for object 49 of sample C01 and

object 20 of sample C10, respectively. A greater difference between the objects

can be observed here since the feature maps correspond to stages closer to the

classification stage. The feature maps of the object labeled as bainite tend to

be brighter, while some dark marked features within the feature maps of the

object labeled as martensite appear lighter in the object labeled as bainite and

vice versa.
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Figure 4.20: Feature maps number (a) 1, (b) 4, (c) 5, (d) 12, (e) 17, and (f) 27

obtained after the third convolution layer for object 49 of sample C01.

Figure 4.21: Feature maps number (a) 1, (b) 4, (c) 5, (d) 12, (e) 17, and (f) 27

obtained after the third convolution layer for object 20 of sample C10.
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Finally, a selected group of feature maps from the aforementioned objects

after the sixth and last convolution layer are shown in Figures 4.22 and 4.23.

This layer is immediately followed by the final pooling and flattening of the

matrix, which occurs prior to the fully connected layers and the classification

stage. A marked difference can be observed between the feature maps of the two

objects. The objects that appear almost completely white in the object labeled

as martensite look completely dark in the corresponding feature map for the

object labeled as bainite. Similarly, features within objects that appear dark in

one object tend to appear bright in the other. Some feature maps detect edges,

while feature map number 30 appears to be showing some kind of texture that

looks finer on the object classified as martensite. The differences between these

feature maps provide insight into how the final densely connected network can

distinguish these two classes.

Figure 4.22: Feature maps number (a) 2, (b) 4, (c) 6, (d) 7, (e) 20, and (f) 30

obtained after the sixth and last convolution layer for object 49 of sample C01.
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Figure 4.23: Feature maps number (a) 2, (b) 4, (c) 6, (d) 7, (e) 20, and (f) 30

obtained after the sixth and last convolution layer for object 20 of sample C10.

Figure 4.24: Illustration of the 16 filters in the first convolutional layer, each

with a shape of 3× 3× 6.
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Julián Vega

Mat.: 13.826

The high efficiency achieved by this architecture opens up possibilities

for its application in more complex tasks and industrial environments. Firstly,

the promising performance of the model suggests its potential for generalizing

to classification tasks involving multiple classes. A model capable of objec-

tively and reproducibly classifying various steel phases, such as different types

of ferrite, different types of bainite, pearlite, and martensite, holds significant

scientific and industrial value.

Secondly, the versatility of this architecture allows for adaptation to dif-

ferent input sources, which can lead to performance improvements or enable the

use of more rapidly obtainable data. For instance, these CNNs can be trained

using each EBSD map, providing insight into the crucial parameters for phase

classification and potentially enhancing performance. Furthermore, employing

the same architecture with LOM images, which require less time to acquire,

would increase its feasibility in industrial-scale applications.

In conclusion, the architecture performed very well on the testing sets,

achieving higher efficiency than the SVM and RF models. While the RF and

SVM models may be easier to implement, this architecture shows promise for

more complex tasks, such as multi-class classification. Furthermore, the effi-

ciency and consistency of results can be improved by increasing the amount of

training and testing data.

Table 4.1: Accuracy on testing set for every fold of every model.
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Chapter 5

Conclusion

In this study, two groups of samples with distinct compositions were effectively

investigated and characterized. Each composition group consisted of five sam-

ples, each with varying cooling rates resulting in different microstructures. A

ROI was carefully selected for each sample, and images were acquired using

both LOM and SEM. Additionally, EBSD maps were obtained for each sample,

providing valuable insights into its crystallographic orientation.

To overcome the inherent challenges associated with conventional mi-

crostructural characterization, such as subjectivity and lack of reproducibility,

a modern correlative approach was employed. This approach involved overlay-

ing LOM and SEM images with EBSD maps of the designated ROIs, enabling

a comprehensive and integrated analysis. By integrating diverse sources of in-

formation based on distinct physical principles, a deeper understanding of the

sample’s microstructure was achieved, facilitating a more objective determi-

nation of ground truths. Additionally, this approach facilitated the creation

of a grain boundary mask, allowing for the extraction of individual bainite or

martensite objects.

Python scripts and GUIs were developed for the efficient acquisition and

manipulation of datasets. These GUIs enable the rapid extraction of objects

from the various methods. Additional features were also incorporated to make

the software suitable for both dataset creation and local model training and

application.
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Multiple machine learning models were trained for both sets of samples.

The process of model selection and hyperparameter optimization required a

comprehensive understanding of various machine learning techniques.

Initially, RF and SVM models were trained due to their ease of im-

plementation using available Python modules. While these methods are not

specifically tailored for this task, they provided a practical option for swift and

efficient implementation. The models exhibited satisfactory efficiency, albeit not

exceptionally high. It should be noted that their performance may decrease for

more complex tasks, such as multi-class classification.

Subsequently, a search was conducted to identify a CNN architecture

that could effectively address the task at hand. Through experimentation and

tuning of various architectures and hyperparameters, a configuration was de-

termined that showed promising results. This architecture was employed for

both sets of samples, with only the input shape differing. The models achieved

remarkably high accuracy and reproducibility. Although these models can al-

ready be utilized for the objective and reproducible classification of bainite and

martensite, it is worth mentioning that further improvements can be made. For

instance, incorporating a larger dataset or performing feature selection could

enhance their performance.

Furthermore, this architecture demonstrates promising potential for tack-

ling more complex tasks of greater significance in scientific and industrial ap-

plications. Particularly, it exhibits promise in the classification of multiple steel

phases, including different types of ferrite, bainite, martensite, and pearlite,

which will be explored in future research.
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1 import numpy as np

2 import cv2

3 import os

4

5 def Creates_Masks(GB_mask_path , sample_folder ,

6 grain_size_threshold =500, Open=False ,

7 remove_grains_in_boundaries=True):

8 """

9 Creates individual masks for each grain and saves them

10

11 Parameters:

12

13 GB_mask_path (str): path of the grain boundry mask.

14

15 sample_folder (str): path of the sample folder.

16

17 grain_size_threshold (int): mainly used to filter out small

18 countours detected due to errors in the grain boundry mask.

19 However , it can also be used to filter out small grains.

20 The default is 100.

21

22 Open (bool): If True performs Open operation on grain

23 boundry mask. It is used to join open lines.

24

25 remove_grains_in_boundaries (bool): If True , does not

26 generate masks of grains that lie on the boundry

27 of the image.

28

29 """

30 gb_mask = cv2.imread(GB_mask_path)

31 gb_mask = cv2.cvtColor(gb_mask , cv2.COLOR_RGB2GRAY)

32 height , width = gb_mask.shape

33

34 if Open:

35 kernel = np.ones((5, 5), np.uint8)

36 gb_mask = cv2.morphologyEx(gb_mask , cv2.MORPH_OPEN , kernel)

37

38 contours , hierarchy = cv2.findContours(

39 gb_mask , cv2.RETR_TREE , cv2.CHAIN_APPROX_NONE)

40

41 if remove_grains_in_boundaries:

42 contours_copy = []

43 for i in contours:

44 if (0 not in i) and (height - 1 not in i) and (width -

1 not in i):

45 contours_copy.append(i)
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46 contours = contours_copy

47

48 object_number = 1

49 for i in range(len(contours)):

50 if cv2.contourArea(contours[i]) > grain_size_threshold:

51 mask = np.zeros ((height , width), dtype="uint8")

52 cv2.drawContours(

53 mask , contours , i, (255, 255, 255),

54 thickness=cv2.FILLED)

55 file_name = sample_folder [-3:] + "_No_" +

56 str(object_number) + ".tif"

57 cv2.imwrite(os.path.join(sample_folder , "Masks",

58 file_name), mask)

59 object_number += 1

60

61 return

Source Code 1: Python function that creates masks for each object.

1 import numpy as np

2 import scipy.io

3 import cv2

4 import os

5

6 def Apply_Mask(EBSD_array_path , sample_folder , grains = [], pad =

False , verbose = True):

7

8 """

9 Applies masks to the EBSD data

10

11 Parameters:

12

13 EBSD_data_path (str): path of the EBSD matrix.

14 sample_folder (str): path of the sample folder.

15

16 Returns:

17 grains (list): list with all masked grains.

18 Saves the arrays in folder masked_grains.

19

20 """

21

22 f = scipy.io.loadmat(EBSD_array_path)

23 globals ().update(f) # Creates variable EBSD_array from EBSD

data file

24 height = EBSD_array.shape [0]

25 width = EBSD_array.shape [1]

26 channels = EBSD_array.shape [2]
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Julián Vega

Mat.: 13.826

27

28 masks_folder = os.path.join(sample_folder , "Masks")

29

30 for i, file in enumerate(os.listdir(masks_folder)):

31

32 mask = cv2.imread(os.path.join(masks_folder , file))

33 mask = cv2.cvtColor(mask , cv2.COLOR_BGR2GRAY)

34 mask = cv2.resize(mask , (height , width))

35

36 cnts = cv2.findContours(mask ,

37 cv2.RETR_EXTERNAL , cv2.CHAIN_APPROX_SIMPLE)

38 cnts = cnts [0]

39 x, y, w, h = cv2.boundingRect(cnts [0])

40

41 mask = mask[y:y+h, x:x+w]

42 mask = mask / 255.

43

44 masked_array = np.zeros((h, w, channels))

45

46 for j in range(channels):

47 masked_layer = np.multiply(EBSD_array[y:y+h, x:x+w,j],

48 mask)

49 masked_array [:,:,j] = masked_layer

50

51 file_name = file [:-3] + ’npy’

52 save_path = os.path.join(sample_folder , "EBSD Arrays",

53 file_name)

54 np.save(save_path , masked_array)

55

56 grains.append(masked_array)

57

58 return grains

Source Code 2: Python function that applies masks to the full EBSD array to

obtain arrays for each object.
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Figure 5.1: Accuracy plot for fold 1 as a function of training epochs for samples

A.

Figure 5.2: Accuracy plot for fold 3 as a function of training epochs for samples

A.
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Figure 5.3: Accuracy plot for fold 4 as a function of training epochs for samples

A.

Figure 5.4: Accuracy plot for fold 5 as a function of training epochs for samples

A.
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Figure 5.5: Loss plot for fold 1 as a function of training epochs for samples A.

Figure 5.6: Loss plot for fold 3 as a function of training epochs for samples A.
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Figure 5.7: Loss plot for fold 4 as a function of training epochs for samples A.

Figure 5.8: Loss plot for fold 5 as a function of training epochs for samples A.
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Figure 5.9: Accuracy plot for fold 2 as a function of training epochs for samples

C.

Figure 5.10: Accuracy plot for fold 3 as a function of training epochs for samples

C.
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Figure 5.11: Accuracy plot for fold 4 as a function of training epochs for samples

C.

Figure 5.12: Accuracy plot for fold 5 as a function of training epochs for samples

C.
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Figure 5.13: Loss plot for fold 2 as a function of training epochs for samples C.

Figure 5.14: Loss plot for fold 3 as a function of training epochs for samples C.
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Figure 5.15: Loss plot for fold 4 as a function of training epochs for samples C.

Figure 5.16: Loss plot for fold 5 as a function of training epochs for samples C.
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